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LLMs struggle to solve compositional tasks (e.g., integer addition), Our Method: Re-Tuning
espeually on prOblems Ionger than those seen durmg training. We design a training and inference pipeline that exploits the recursive nature of
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Problem Length In short, Re-Tuning tunes LLMs to leverage recursion to better solve compositional

. . roblems with a higher degree of accuracy.
With existing methods, LLMs struggle to attend to the relevant context on longer P 5 5 Y

sequences, resulting in poor performance. Moreover, LLMs have a fixed-sized context
window. Extrapolating beyond this window results in lower accuracy. Re-Tuning exhibits significantly better performance across three

representative compositional tasks, especially on longer problems.

Re-Tuning directly leverages recursion during inference!
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Algorithm 1 RecursiveGenerate Pseudocode . 0
function RECURSIVEGENERATE(model, tokenizer, prompt)
context < GENERATE(model, tokenizer, prompt) 3 0.6 3 0.6
while CONTAINSUNEXECUTEDCALL(contert) do = =
call <+ EXTRACTCALL(context) < 0.4 K 0.4
result <~ RECURSIVEGENERATE(model, tokenizer, call)
context < context + result 02 02
context < GENERATE(model, tokenizer, context) T - .
end while "0 10 20 30 40 50 60 "0 10 20 30 40 50 60
return context Length Length
. (a) LLaMA-7B integer addition. (b) LLaMA-13B integer addition.
end function
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During inference, Re-tuning involves (1) recursively decreasing the size of the problem, 0.8- 0.8
(2) solving the base case(s), and (3) passing the solutions up the recursive stack, solving
subproblems of increasing complexity along the way. Each subproblem is solved in its G 0.6- G 0.6
own context, enabling the LLM to better attend to the relevant information. 2 o
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Re-Tuning is significantly more sample-efficient than existing \\
methods. 05 5 10 15 20 25 30 05 5 10 15 20 25 30
. . Length Length
—— Baseline  —— 5cratchpad ‘— Re-Tuning (OUFS)‘ (c) LLaMA-7B dynamic programming.  (d) LLaMA-13B dynamic programming.
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Notably, on average, Re-Tuning enables 30%-40% accuracy improvements over
existing methods on LLaMA-7B and LLaMA-13B across three representative

compositional problems.

Re-Tuning requires significantly fewer training samples than existing methods to reach
the same level of performance.



