
RelSim: Relation Similarity Search in Schema-Rich
Heterogeneous Information Networks [Extended Version]

Chenguang Wang† , Yizhou Sun∗ , Yanglei Song‡ , Jiawei Han‡ , Yangqiu Song‡ ,
Lidan Wang‡, Ming Zhang†

†School of EECS, Peking University
∗College of Computer and Information Science, Northeastern University

‡Department of Computer Science, University of Illinois at Urbana-Champaign
wangchenguang@pku.edu.cn, yzsun@ccs.neu.edu, {ysong44,hanj,yqsong,lidan}@illinois.edu,

mzhang@net.pku.edu.cn

ABSTRACT
Recent studies have demonstrated the power of modeling real world
data as heterogeneous information networks (HINs) consisting of
multiple types of entities and relations, and the usefulness of using
network schema as a high-level description of an HIN. Unfortu-
nately, most of such studies (e.g., similarity search) confine dis-
cussions on the networks with only a very small number of entity
and relationship types (which we call HINs with simple schema),
such as DBLP. In the real world, however, the network schema
can be rather complex, such as in Freebase. In such HINs with
rich schema, it is often too much burden to ask users to provide
meta-path(s) explicitly for similarity search. It is more desirable to
ask users to just provide some simple relation instance examples
(e.g., 〈Barack Obama, John Kerry〉 and 〈George W. Bush, Con-
doleezza Rice〉) as a query, and have the system generate meta-
path(s) that best explains the latent semantic relation (LSR) implied
by the query (e.g., “president vs. secretary-of-state"). Such meta-
paths will guide the system to find other similar relation instances
(e.g., 〈Bill Clinton, Madeleine Albright〉). In this paper, we sys-
temically study the problem of relation similarity search in schema-
rich HINs, and propose a relation similarity search framework that
consists of two components: (1) LSR representation and learn-
ing: where an LSR is represented as a weighted combination of
query-based meta-paths generated based on a query-based network
schema and the weights are learned by an optimization model; and
(2) an efficient similarity search algorithm: where the algorithm
uses a new meta-path-based relation similarity measure, RelSim,
to compute the relation similarity based on the learned LSR. Five
real world datasets are constructed for relation similarity search,
and the experiments on the datasets demonstrate the power of our
approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Relation Similarity Search, Schema-Rich Heterogeneous Informa-
tion Networks

1. INTRODUCTION
Heterogenous information networks (HINs) have been used re-

cently for modeling real world relationships in many applications [9,
20, 26]. Network schema, a graph of entity types connected by re-
lation types, has also been introduced as an abstractive description
of HINs [21]. Previous HIN studies [20, 21] are confined to simple
schemas, consisting of only a few entity and relation types, such
as the DBLP network, with four entity types: Paper, Venue, Au-
thor and Term, and a few relation types connecting the entity types.
However, in the real world, HINs can often be with more sophisti-
cated network schemas, containing many more entity types and re-
lation types. For example, the Freebase network1 contains 1,500+
types of entities, such as Organization, Profession, Book, Musi-
cian, Film, and Location, and 35,000+ types of relations among
the entity types, such as “is president of” and “is secretary of state
of” [7]. We call such HINs with sophisticated network schemas as
schema-rich HINs.

Many research problems arise with schema-rich HINs. For ex-
ample, the basic functions, such as similarity search, will need to be
re-examined. The concept of meta-path [21], a path on the graph of
network schema, that describes the semantic meaning between en-
tities, has been shown its effectiveness in similarity search in HINs
with simple schema [16, 21]. One or a set of meta-paths can be eas-
ily provided by a user to represent her query intent or interest, e.g.,
find similar authors publishing papers at the same venue can be
specified easily as a meta-path Author-Paper-Venue-Paper-Author.
However, in schema-rich HINs, it is unrealistic to ask users to pro-
vide meta-paths explicitly since there are too many possible mean-
ingful paths to be chosen from a complex network schema, espe-
cially when the meta-paths needed are long and sophisticated. In
such cases, it is more reasonable to ask users to provide a set of sim-
ple examples, e.g., 〈Barack Obama, John Kerry〉 and 〈George W.
Bush, Condoleezza Rice〉, as a query, and ask the system to gener-
ate the meta-paths that can best explain the latent semantic relation
(LSR) in the user’s query. With such generated meta-paths, the sys-
tem can further automatically find other similar relation instances
satisfying the same LSR “president vs. secretary-of-state,” such as
〈Bill Clinton, Madeleine Albright〉, and use the new examples to
generate more meta-paths iteratively.

The above process turns the meta-path generation problem to

1http://www.freebase.com/

Figure 1: Relation similarity search in schema-rich HIN. Left: a user query; middle: different query-based meta-paths associated with corresponding weights

(P1 = President
is president of−−−−−−−−−→ Country

is secretary of state of←−−−−−−−−−−−−−−− Secretary of State, P2 = Politician is member of−−−−−−−−−→ Party is member of←−−−−−−−−− Politician, P3 =

President
is president of−−−−−−−−−→ Country

is presidential candidate of←−−−−−−−−−−−−−−−−−− Presidential Candidate); right: ranked similar relation instances.

another fundamental problem: searching similar relation instances
for a query in schema-rich HINs. As shown in Figure 1, our goal is
to find similar relation instances based on the query Q = {〈Barack
Obama, John Kerry〉, 〈George W. Bush, Condoleezza Rice〉}. We
address the following challenges:

1. How to find the most likely LSR implied by the query? Di-
verse LSRs are implied by the query. For example, except
for LSR “president vs. secretary-of-state,” 〈Barack Obama,
John Kerry〉 also satisfies LSR “president vs. presidential
candidate.” Only in the semantic relation of “president vs.
secretary-of-state,” 〈Barack Obama, John Kerry〉 and 〈Bill
Clinton, Madeleine Albright〉 are similar.

2. How to find the other similar relation instances that imply
the same LSR (e.g., 〈Bill Clinton, Madeleine Albright〉)?

Previous studies cannot solve the above challenges. First, al-
though similarity search has been widely studied, most of previous
studies are on entity similarity [16, 21]. For example, given two
entities v(1) and v(2), sim(v(1), v(2)) aims to measure the simi-
larity between v(1) and v(2). Suppose we have two other entities
v(1)′ and v(2)′. Relation similarity sim(〈v(1), v(2)〉,〈v(1)′, v(2)′〉)
aims to measure the similarity between the relation instances 〈v(1),
v(2)〉 and 〈v(1)′, v(2)′〉. There is no trivial way to apply entity
similarity measures to measure relation similarity. For example,
“Barack Obama” is similar to “Bill Clinton” (President of United
States), and “John Kerry” is similar to “John F. Kennedy” (Demo-
cratic). But 〈Barack Obama, John Kerry〉 is not similar to 〈Bill
Clinton, John F. Kennedy〉 according to the LSR “president vs.
secretary-of-state.” Second, there are some existing methods on di-
rectly measuring similarity between two relation instances [2, 22].
However, they cannot be directly applied to the relation similar-
ity search problem because (1) these approaches do not distinguish
the diverse LSRs existing in a relation instance, and (2) they focus
on measuring similarity between two relation instances represented
with patterns mined from external text data, which is hard to be
adapted to similarity search in schema-rich HINs.

This paper first defines a novel meta-path-based relation similar-
ity measure, RelSim, to measure the similarity between two relation
instances based on the LSR: two relation instances are more sim-
ilar when sharing more important (heavily weighted) meta-paths.
Then it provides a systematic solution to finding similar relation
instances based on RelSim in schema-rich HINs for a given query.

Figure 2: Relation similarity search framework.

Figure 2 illustrates our relation similarity search framework: Given
a queryQ, a query-based network schema is firstly generated (Step
1), e.g., this schema can reduce the number of entity types from
1,500+ in Freebase to five types, which substantially facilitates the
subsequent analysis. Then query-based meta-paths are generated
and filtered (Steps 2 and 3). The most likely LSR is further learned
based on the optimization model (Step 4), which can best explain
the semantic meaning in the query through linear programming. Fi-
nally, an efficient RelSim-based similarity search algorithm is used
to generate the search result (Step 5).

After Step 1, we should have a simpler network schema: the
query-based network schema. Using the query to generate the query-
based network schema can significantly reduce the complexity of
whole network schema to the limited number of types related to the
query (e.g., in Freebase, the resultant query-based network schema
for the query Q = {〈Barack Obama, John Kerry〉, 〈George W.
Bush, Condoleezza Rice〉} can reduce the number of entity types
from 1,500+ to five types), which substantially facilitates the sub-
sequent analysis.

In Steps 2 and 3, the query-based meta-paths are generated based
on the query-based network schema including types of entities and
relations only relevant to the query, and selected based on several
criteria.

In order to distinguish the various LSRs held in the query, we
represent an LSR as a weighted combination of query-based meta-
paths. The corresponding weights are either explicitly specified by
the user or implicitly learned. In Step 4, to find the most likely
LSR in the query, we propose an optimization model to learn the

weights of the query-based meta-paths, which can best explain the
semantic meaning in the query through linear programming.

After having the most likely LSR, in Step 5, a RelSim-based
similarity search algorithm is performed to rank the similar relation
instances based on the similarity scores computed using RelSim.

To the best of our knowledge, no systematic solution to relation
similarity search has been proposed in schema-rich HINs. Our con-
tributions can be highlighted as follows:
• We study relation similarity search in schema-rich heteroge-

neous information networks, a new but very important prob-
lem due to its broad applications.
• We define a novel relation similarity measure, RelSim, to

compute the similarity between two relation instances.
• We present a framework for relation similarity search in schema-

rich HINs, mainly including latent semantic relation repre-
sentation and learning, and an efficient search algorithm.
• We construct five real world datasets for relation similar-

ity search research, and experimental results on the datasets
demonstrate the effectiveness and efficiency of our approach,
in comparison with baseline systems.

The remainder of the paper is organized as follows. Section 2
introduces the preliminary knowledge. Section 3 formalizes the
problem. Section 4 presents the relation similarity search frame-
work in schema-rich HINs. Experiments and results are discussed
in Section 5. Section 6 discusses the related work, and we conclude
this study in Section 7.

2. PRELIMINARIES
In this section, we introduce some preliminary knowledge of our

proposed problem. Following [21], we define heterogeneous infor-
mation network as follows.

DEFINITION 1. A heterogeneous information network (HIN)
is a directed graph G = (V,E) with an entity type mapping φ:
V → A and a relation type mapping ψ: E → R, where V denotes
the entity set and E denotes the link set, A denotes the entity type
set and R denotes the relation type set, and the number of entity
types |A| > 1 or the number of relation types |R| > 1.

The network schema provides a high-level description of a given
heterogeneous information network.

DEFINITION 2. Given a heterogeneous network G = (V,E)
with the entity type mapping φ: V → A and the relation type
mapping ψ: E → R, the network schema for network G, denoted
as TG = (A,R), is a directed graph with nodes as entity types
from A and edges as relation types fromR.

Note that in most real world schema-rich HINs, such as Freebase
and DBpedia, the types of entities or relations are often organized
in a conceptually hierarchical manner. For example, Employee is a
sub-perspective of Organization. Organization is a sub-perspective
of Business. All the types or perspectives share a common root,
called Object. Figure 3 depicts an example of conceptual hierarchy
of entity types.

Another important concept in heterogeneous information net-
work is meta-path [21], proposed to systematically define relations
between entities that have different semantic meanings.

DEFINITION 3. A meta-path P is a path defined on the graph
of network schema TG = (A,R), and is denoted in the form of

A1
R1−−→ A2

R2−−→ . . .
RL−−→ AL+1 , which defines a composite rela-

tion R = R1 •R2 • · · · •RL between types A1 and AL+1, where
• denotes relation composition operator, and L is the length of P .

Figure 3: Conceptual hierarchy of entity types.

For simplicity, we also use type names connected by “-” to de-
note the meta-path when there exist no multiple relations between
a pair of types: P = (A1 −A2 − · · · −AL+1). For example,
in the Freebase network, the composite relation two Person co-
founded an Organization can be described as Person found−−−−→ Organi-

zation found−1

−−−−−−→ Person, or Person-Organization-Person for simplicity.
We say a path p = (v1 − v2 · · · vL+1) between v1 and vL+1 in
network G follows the meta-path P , if ∀l, φ(vl) = Al and each
edge el = 〈vl, vl+1〉 belongs to each relation type Rl in P . We
call these paths as path instances of P , denoted as p ∈ P . R−1

l

represents the reverse order of relation Rl.
Due to the complexity of the schema of a schema-rich network,

the number of meta-paths that can be generated between two en-
tity types could be extremely large, even confined to a small meta-
path length. For example, there are 49, 298 length-4 meta-paths
between entity types Person and Person in our Freebase subset.

3. THE RELATION SIMILARITY SEARCH
PROBLEM

We study the relation similarity search problem, that is, find-
ing similar relation instances for a user query in schema-rich HINs.
Given a small set of relation instances as an example query (e.g.,
〈Larry Page, Sergey Brin〉 and 〈Jerry Yang, David Filo〉), the sys-
tem will first discover its latent semantic relation (LSR) (e.g., “co-
founders") and then output similar relation instances (e.g., 〈Bill
Gates, Paul Allen〉).

In a simple case, a query may imply a simple LSR that can be
represented as a single meta-path, such as Person found−−−−→ Organiza-

tion found−1

−−−−−−→ Person. In general, an LSR can be represented as a
weighted combination of multiple meta-paths.

DEFINITION 4. A latent semantic relation (LSR) is defined as a
weighted combination of meta-paths, denoted as {wm,Pm}Mm=1,
where Pm is mth meta-path and ωm is the corresponding weight
for Pm.

An advantage of modeling LSR as a weighted combination of
meta-paths is augmenting the capability of representing different
semantic meanings. For example, as shown in Figure 1, given a
user query Q = {〈Larry Page, Sergey Brin〉, etc.}, we show two
meta-paths with weights between the two entities: P1 = Person
found−−−−→ Organization found−1

−−−−−−→ Person, P2 = Person alma mater−−−−−−−−→ Edu-

cation alma mater−1

−−−−−−−−−−→ Person. The corresponding weights are ω1 and
ω2. If ω1 > ω2, there is a higher possibility that the LSR is “co-
founders.” If ω1 = ω2, the possibility of the LSR be “co-founders”
is equal to be “schoolmates.” If ω1 < ω2, there is a higher possibil-
ity that the LSR is “schoolmates.” Different weighted combinations
of meta-paths lead to different semantic meanings.

3.1 RelSim: A Novel Relation Similarity Mea-
sure

Although there are some existing relation similarity measures [2,
22], but they do not distinguish the diverse subtle semantic mean-
ings in the relation instance (i.e., they assume there is only one
general relation held in one relation instance). For example, only
with semantic meaning “co-founders,” 〈Larry Page, Sergey Brin〉
and 〈Bill Gates, Paul Allen〉 are similar. When the meaning turns
to “schoolmates”, they are dissimilar. Here, we define a meta-path-
based relation similarity measure, RelSim, to measure similarity be-
tween two relation instances based on the LSR with subtle seman-
tic meaning. The intuition behind RelSim is that if two relation
instances share more heavily weighted meta-paths, they tend to be
more similar.

We formally define RelSim below:
DEFINITION 5. RelSim: a meta-path-based relation similarity

measure. Given an LSR, denoted as {wm,Pm}Mm=1, RelSim be-
tween two relation instances r = 〈v(1), v(2)〉 and r′ = 〈v(1)′, v(2)′〉
is defined as:

RS(r, r′) =
2×

∑
m ωmmin(xm, x′m)∑

m ωmxm +
∑
m ωmx′m

(1)

where xm is the number of path instances between v(1) and v(2) in
relation r following meta-path Pm, and x′m is the number of path
instances between v(1)′ and v(2)′ in relation r′ following meta-path
Pm. We use a vector x = [x1, · · · , xm, · · · , xM] to characterize
a relation instance r, and a vector ω = [ω1, · · · , ωm, · · · , ωM] to
denote the corresponding weights. M is the number of meta-paths.

In schema-rich HINs, the number of path instances between two
entities following a specific meta-path is often 1 or 0, denoting
whether the two entities satisfy the meta-path-based relation. For
example, “Larry Page” and “Sergey Brin” have co-founded one or-
ganization. By looking at RelSim defined in Def. 5, we can see
that RS(r, r′) is defined in terms of two parts: (1) the semantic
overlap in the numerator, which is the weighted number of over-
lapped meta-path-based relations of r and r′; and (2) the semantic
broadness in the denominator, which is the weighted number of
total meta-path-based relations satisfied by r and r′. Note that, if
the number of path instances for a meta-path is larger than 1, i.e.,
xm > 1, we treat the two entities have satisfied the relation xm
times. We can see that the larger number of overlapped meta-path-
based relations shared by the r and r′, the more similar the two
relation instances are, which is further normalized by the semantic
broadness of r and r′.

For example, let us consider two relation instances, r = 〈Larry
Page, Sergey Brin〉 and r′ = 〈Bill Gates, Paul Allen〉, and the LSR
represented with a weighted combination of three meta-paths, in-
cluding the two meta-paths mentioned above P1 (“co-founders”)

andP2 (“schoolmates”), andP3 = Person invent−−−−→ Invention invent−1

−−−−−−→
Person (“co-inventors”), with the weights ω = [0.8, 0, 0.2]). By
looking at the Freebase network, we can find x = [1, 1, 2] and x′ =
[1, 0, 1] for relation instance r and r′, respectively. Thus, the num-
ber of shared meta-paths between them are 1, 0, and 1, respectively.
The RelSim between these two relation instances is:

RS(〈Larry Page, Sergey Brin〉, 〈Bill Gates,Paul Allen〉) =
2× (0.8 · 1 + 0 · 0 + 0.2 · 1)

(0.8 · 1 + 0 · 1 + 0.2 · 2) + (0.8 · 1 + 0 · 0 + 0.2 · 1)
= 0.959,

which has shown that the two relation instances are rather similar
given the LSR we are interested in.

RelSim satisfies several nice properties as indicated from prop-
erties (1) to (3).

• (1) Range: ∀r, r′, 0 ≤ sim(r, r′) ≤ 1.

• (2) Symmetric: sim(r, r′) = sim(r′, r).

• (3) Self-maximum: sim(r, r) = 1.

PROOF. Please see Proof in the Appendix.

3.2 Problem Definition
Given the above definitions, we now formally define the relation

similarity search problem as follows.
Since we are aiming to find other relation instances similar to the

ones stated in a query, we first define the RelSim between query and
a relation instance as the average similarity between each relation
instance in the query and the relation instance:

DEFINITION 6. Given a user queryQ = {rk = 〈v(1)
k , v

(2)
k 〉}, k =

1, · · · ,K, and a relation instance r′, the RelSim between Q and r′

is calculated as RS(Q, r′) =
∑
k RS(rk, r

′)/K.

Then our relation similarity search problem is to find all the top
relation instances that are similar to query Q.

In schema-rich HINs, it is not trivial to (1) identify the LSR given
a user query and (2) perform RelSim computation, as the number of
meta-paths that can be generated is extremely large. In next section,
we propose an efficient search framework to solve the problem.

4. THE RELATION SIMILARITY SEARCH
FRAMEWORK

In this section, we introduce our framework for efficient relation
similarity search in schema-rich HINs. Our framework, shown in
Figure 2, can effectively and efficiently address the two challenges
raised in the introduction, i.e., identifying the LSR implied in the
query (Section 4.1) and performing the RelSim computation effi-
ciently (Section 4.2). We take the queryQ = {〈Larry Page, Sergey
Brin〉, 〈Jerry Yang, David Filo〉} shown in Figure 1 as an example
to illustrate each step. We first introduce our LSR learning method.

4.1 LSR Learning
In order to represent an LSR in a schema-rich HIN, we need to

find a small number of representative query-based meta-path set
beforehand, because of the following two issues:

1. It is commonsense that the real semantic meaning that user
implies in a query is specific, i.e., the meaning should be
represented with limited number of meta-paths that focus on
relevant types of entities and relations;

2. It is time consuming and impractical to automatically gen-
erate meta-paths by enumerating all the possible meta-paths
between entities.

We therefore design three steps (Step 1-3 as shown in Figure 2)
to address the above issues. To address the first issue, in Step 1, we
construct a query-based network schema based on the user query
Q, through keeping the types of entities and relations relevant to the
query. In Step 2 and Step 3, we address the second issue, by gen-
erating meta-paths using an efficient query-based meta-path gener-
ation algorithm using a query-based network schema, and filtering
the query-based meta-paths generated in Step 2 using three criteria.

After an LSR is represented with a smaller meta-path set, in Step
4, the weights of the most likely LSR are learned based on an opti-
mization model using the user provided examples in Q.

We introduce the query-based network schema next.

Figure 4: Query-based network schema for query Q = {〈Larry Page,
Sergey Brin〉, 〈Jerry Yang, David Filo〉}.

4.1.1 Query-based Network Schema
Due to the sophisticated structure of the rich network schema, for

a user query which contains several relation instances (examples), it
is impossible and not necessary to use the whole HIN, and thus we
only keep a sub-network that is relevant to the query. For example,
given the query Q in Figure 1, as illustrated in Figure 4, the entity
types, such as Person, Organization, Education, are relevant to the
query. While types like Film, Musician, Book are not relevant, and
thus ignored. Formally, we propose the concept of query-based
network schema to represent the part of entire network schema that
is relevant to the query.

DEFINITION 7. Query-based network schema. A query-based
network schema is a sub-network schema of a schema-rich HIN.
Given a schema-rich HIN G = (V,E), a user query Q, and the
diameter of schema D, D is the maximum length of hops that an
entity v ∈ Q can arrive on the graph of schema, then query-based
network schema contains types of entities in the Q and within D-
hop to the entities (denoted as Vu), and types of relations 〈v(1), v(2)〉
(v(1), v(2) ∈ Vu) (denoted as Eu). A query-based network schema
is denoted as QNSG = (Au,Ru), where Au = {φ(vu), vu ∈
Vu} andRu = {ψ(eu), eu ∈ Eu}.

Given a query Q and the diameter of the schema D, we accord-
ingly generate QNSG based on Q and D as follows. First, for
each example rk ∈ Q (Def. 6), we enumerate all the neighbor
entities within d-hop (d ≤ D/2) relations for each entity (v(1)

k

and v(2)
k). Next, we look up the intersection of all entity and re-

lation types to generate the QNSG = (Au,Ru), where Au is
the intersection set of entity types, and Ru is the intersection set
of relation types. For example, given the query Q in the previ-
ous example, QNSG generated by the above process is shown in
Figure 4, where Au = {Person, Organization, Education, etc.},
and Ru = {found, influence, alma mater, etc.}. We can see that,
when using query-based network schema, the cost for generating
meta-paths is reduced by confining the rich network schema.

4.1.2 Query-based Meta-Path Generation Algorithm
Most existing work assumes that meta-paths are provided by

users. This assumption may be true for schema-simple HIN (e.g.,
the DBLP network), it may be infeasible for schema-rich HIN such
as the Freebase network. Besides, long meta-paths can be difficult
to discover. A simple way can be proposed to automatically gener-
ate meta-paths: for a relation instance 〈v(1), v(2)〉, one can generate
all the possible meta-paths via enumerating all the relations, start-
ing from v(1) and ending with v(2). However, it is time consuming
and impractical. As pointed out in [16], the number of possible
meta-paths grows sharply with the length of meta-path. We there-
fore propose an efficient query-based meta-path generation algo-

rithm (QMPG in Algorithm 1) to generate meta-paths for a relation
instance 〈v(1), v(2)〉 based on query-based network schema.

Motivated by binary search, given a relation instance, to gen-
erate the meta-paths within length-L for the relation instance, we
first generate meta-paths that within L/2-hop to each entity of the
relation instance, and then composite the meta-paths within length-
L/2. We build inverted indices on types of entities and relations to
speed up the process. The details of the algorithm is described as
below.

Algorithm 1: QMPG(〈v(1), v(2)〉, QNSG, L).

input : A relation instance 〈v(1), v(2)〉, the query-based network
schema QNSG = (Au,Ru), and the maximum
query-based meta-path length L.

output : A query-based meta-path set P for 〈v(1), v(2)〉.

P← {}, V(1) ← {v(1)}, V(2) ← {v(2)};1
for l← 0 to L/2 do2

for entity v(1)′ within l-hop to entity v(1) do3
V(1) ← v(1)′;4

for entity v(2)′ within l-hop to entity v(2) do5
V(2) ← v(2)′;6

for entity v ∈ V(1) ∪V(2) do7
if φ(v) ∈ Au then8

A(v)← φ(v); // A is the inverted index on entity types9
for entity v′ within 1-hop to entity v do10

if φ(v′) ∈ Au ∨ ψ(〈v, v′〉) ∈ Ru then11
A(v′)← φ(v′), R(〈v, v′〉)← ψ(〈v, v′〉); // R is12
the inverted index on relation types

for v(1)′ ∈ V(1) do13
P(1) ← A(v(1)) ◦R(〈v(1), v′〉) · · ·A(v(1)′);14

for v(2)′ ∈ V(2) do15
P(2) ← A(v(2)) ◦R(〈v(2), v′〉) · · ·A(v(2)′);16

if (A(v(1)′) == A(v(2)′)) then17
P ← P(1) ⊕ P(2), P← P ∪ {P};18

return P;19

Given a relation instance 〈v(1), v(2)〉, the maximum length of
query-based meta-path L, and QNSG, the QMPG algorithm re-
turns a set of query-based meta-paths P for 〈v(1), v(2)〉. First, in
Lines 1-6, we retrieve all the neighbor entities within L/2-hop to
v(1) and v(2), denoted as v(1)′ and v(2)′, and build indices V(1)

and V(2) for v(1) and v(1)′, v(2) and v(2)′.
Second, in Lines 7-12, for each entity v in V(1) ∪ V(2), we

check its types φ(v). We build an inverted index A on the types
of entities, when Au contains the type. For each 1-hop neighbor
entity v′, we build an inverted index when the types of entities are
included in the Au. An inverted index R is also built on relation
types between v and v′, if the relation type is included inRu.

Next, in Lines 13-19, we generate query-based meta-paths be-
tween the entities and their neighbor entities (e.g., P(1) denotes a
meta-path from v(1) to v(1)′), where ◦ represents the composition
operator between types of entities and relations. Then, a meta-path
P is generated by compositing P(1) and P(2), if v(1)′ and v(2)′ are
sharing the same entity type, where ⊕ is the composition operator
on entity types. P is appended to the query-based meta-path set P.
Finally, P is returned for the given relation instance 〈v(1), v(2)〉.

For example, given the query Q in Figure 1 and L = 2, we
generate meta-paths for the example 〈Larry Page, Sergey Brin〉
based on QNSG as shown in Figure 4. First, we retrieve the

neighbor entities within 1-hop to “Larry Page” and “Sergey Brin”,
build an index for “Larry Page” and neighbor entities as V(1) =
{Larry Page, Google, Stanford University, PageRank, Mountain
View, Google Hacks, etc.}, and an index for “Sergey Brin” and
neighbor entities as V(2) = {Sergey Brin, Google, Stanford Uni-
versity, PageRank, IT, Eric Schmidt, Mountain View, Male, etc.}.
Second, an inverted index A is built on entity types in QNSG
(e.g., A(Larry Page) = Person). Notice that “Google Hacks” and
“Male" are not indexed, since their entity types (Book and Gen-
der) are irrelevant. An inverted index R is built on 1-hop rela-
tions between entities in V(1) and V(2) (e.g., R(〈Larry Page, Stan-
ford University〉) = alma mater). Then a query-based meta-path

P = Person invest−−−−→ Organization
employee in−1

−−−−−−−−−−→ Person is generated
by connecting P(1) = Person invest−−−−→ Organization and P(2) = Person
employee in−−−−−−−−→ Organization, since they share the same type Organiza-

tion, where a path instance Larry Page-Google-Sergey Brin follows
the meta-path. These multi-hop meta-paths (with length larger than
one) are quite useful for discovering missing links between two en-
tities. There are no direct connections between them. Finally, the
query-based meta-path set P is generated. We show six query-
based meta-paths in P in Table 1.

Meta-Path No. Meta-Paths

P1 Person found−−−−→ Organization found−1

−−−−−−→ Person

P2 Person alma mater−−−−−−−−→ Education alma mater−1

−−−−−−−−−−→ Person

P3 Person invent−−−−→ Invention invent−1

−−−−−−→ Person

P4 Person invest−−−−→ Organization
employee in−1

−−−−−−−−−−→ Person

P5 Person win−−→ Award win−1

−−−−→ Person

P6 Person
birthdate year−−−−−−−−−−→ Year

birthdate year−1

−−−−−−−−−−−−→ Person

Table 1: Example meta-paths generated for the queryQ shown in Figure 1.

Notice that, we manually translate the hierarchy of relations in a
meta-path into natural language for better understanding. For ex-
ample, we translate the relation Business/Organization/Employee
to employee in in P4. We use “/” to represent the hierarchy of re-
lations. As illustrated in Figure 3, Business represents the most
general concept (at the top) of the hierarchy. While Employee rep-
resents the most concrete concept (at the bottom) of the hierarchy.
These meta-paths are of different hierarchical semantic levels, and
used to explain the LSRs held in the query. We use all the meta-
paths with different hierarchical semantics without distinguishing
them, and will explore better ways in the future.

Moreover, with larger L, more query-based meta-paths will be
generated. More meta-paths may provide us more semantics about
the LSRs held in the relation instance. But in the real world, long
meta-paths are not that meaningful, because they often reflect weaker
semantic connections between entities.

4.1.3 Criteria for Query-based Meta-Path Selection
We assume an LSR could be expressed with a small number of

(weighted) representative query-based meta-paths. In practice, the
size of P (|P|) is large. It is necessary to select such a set out of P
to keep the useful meta-paths but remove the useless or noisy ones.
We use P′ to denote the query-based meta-path set selected from
P.

Given a user query Q, and P = ∪Kk=1Pk where Pk is the meta-
path set for kth example rk ∈ Q generated by QMPG, we include
query-based meta-paths in P′ satisfying at least one of the follow-
ing criteria:
Criterion 1. Select Pm ∈ P, s.t.

∑
k

xkm > θ1

where xkm is the number of path instances between v(1)
k and v(2)

k

of rk following query-based meta-pathPm. This criterion suggests
that if the total number of path instances in Q is beyond the thresh-
old θ1, the corresponding meta-path Pm should be included in P′.
Similar to term frequency used in information retrieval, this crite-
rion aims to find meta-paths that are important for the query. For
example, since P6 co-occurs only once with the examples in Q, it
should not be in P′.

Criterion 2. Select Pm ∈ P, s.t. information_gain_ratio(Xm) > θ2

where information gain ratio [1] is a widely used technique for fea-
ture selection [17]. We model the mth feature (Pm) as a random
variable Xm. The intuition is that if a meta-path Pm has a higher
information gain ratio, it will better split the positive and negative
examples (positive and negative examples will be described in Sec-
tion 4.1.4). The criterion prefers to select meta-paths with higher
information gain ratio (beyond the threshold θ2) into P′.

Criterion 3. Select Pm ∈ P, s.t. ∃Pn ∈ P′, KL(Prm||Prn) < θ3

where two distributions Prm , P (Xm) and Prn , P (Xn). Xn
is a random variable for nth feature (Pn). Distributional hypothe-
sis, which states that words that occurred in the same contexts tend
to have similar meanings [10], has been used for identifying similar
words. We make an assumption that it is an extension to the distri-
butional hypothesis: if the instances of two meta-paths tend to sim-
ilarly distribute over examples in a query, then the two meta-paths
tend to be similar. The degree of similarity is measured using the
Kullback-Leibler (KL) divergence between two distributions Prm
and Prn. This criterion infers Pm in P′ when Pn has already
been included in P′, because they are similarly distributed over ex-
amples in a query (i.e., KL under the threshold θ3).

We will discuss the settings of three parameters, θ1, θ2, and θ3,
in the experiment section.

4.1.4 Optimization Model
Our system finds the most likely LSR implied in the query by

learning the best weights of the selected query-based meta-paths
in P′. To express the user’s need, it is easier for her to provide a
query of several examples, and let system learn the weight of each
meta-path automatically, rather than specify the weights of them.

Given a query Q, and filtered query-based meta-path set P′, we
propose an optimization model to learn the weight of each meta-
path P ∈ P′. We assume one or several meta-paths in P′ can
capture the most likely LSR held in the query. For example, given
a user’s query Q as shown in Figure 1, it’s probable that the most
likely LSR is a combination of two meta-paths, e.g., P1 and P2,
indicating that two Person co-founded an Organization, and both of
them are from the same Education Institute. Our task is to discover
such important query-based meta-paths by optimizing the weights.

The difficulty of understanding the LSR is that there is a lot of
background noise. For example, in Table 1, 〈Larry Page, Sergey
Brin〉 and 〈Jerry Yang, David Filo〉 both have the meta-path P1.
But at the same time, they also share meta-paths like P4, which is
a less important meta-path. P4 can be considered as background
noise, since randomly choosing a relation between Person and Per-
son may have a higher possibility to satisfy P4. For example, in
Figure 1, “Larry Page” and “Paul Allen” do not share the impor-
tant meta-paths, such as P1, with the examples in Q. We call such
artificial pairs (e.g., 〈Larry Page, Paul Allen〉) as “negative exam-
ples.”2

2Sometimes, negative examples may accidentally share meta-paths

Formally, the negative examples are generated by randomly re-
placing the subject (v(1)

k) (object (v(2)
k)) entity of one relation in-

stance by the subject (object) entity of another. A relation instance
may have multiple negative examples. We hope to maximize the
weights of query-based meta-paths that are mainly shared by pos-
itive examples (i.e., examples in Q), but never or rarely appear in
negative examples.

Denote K = |Q| as the number of examples in the user query,
and M = |P′| as the number of selected query-based meta-paths.
Then, each relation instance would have a feature vector of length
M , which is denoted as xk (k = 1, · · · ,K). The mth element
of xk is the number of path instances between v(1)

k and v(2)
k of

rk ∈ Q. We also denote x̃k as a negative (or corrupted) example.
We use L2 norm to normalize all feature vectors.

We assign each meta-path a weight ωm (m = 1, · · · ,M), ωm ≥
0 and regularize

∑M
m=1 ωm = 1. Then given the relation instances

and the negative examples, we try to find a set of weights in which
“important” meta-paths have higher weights, while “unimportant”
ones near 0. Inspired by the ranking loss proposed as Eq. (17) in
[4], we propose the following optimization model:

min
ω

K∑
k=1

max{0, c− ωTxk + ωT x̃k} (2)

s.t. ωm ≥ 0 ∀m = 1, · · · ,M
M∑
m=1

ωm = 1 (3)

where c ∈ (0, 1] is a tuning parameter. If c = 1, then we have
max{0, c−ωTxk+ωT x̃k} = 1−ωTxk+ωT x̃k (since xk− x̃k
is going to be a vector with each entry smaller than or equal to 1
after normalization, with the constraint

∑M
m=1 ωm = 1, we then

have ωT (xk − x̃k) ≤ 1). As a result, this model will essentially
maximize the weights of meta-paths that have the biggest differ-
ence between positive and negative examples. If c < 1, then the
model will consider the accident that positive and negative exam-
ples share the important meta-paths, and that some of the important
meta-paths are missing in some positive examples. Following our
example, P′ = {Pm,m ∈ (1, · · · , 5)} as shown in Table 1, and
the learned weights ω = [0.45, 0.25, 0.15, 0.05, 0.1], it demon-
strates that P1 is more important than P4 to represent the most
appropriate LSR implied by Q, because negative examples (e.g.,
〈Larry Page, Paul Allen〉) may have a higher possibility to satisfy
P4 compared to P1.

By introducing slack variablesαk = max{0, c−ωTxk+ωT x̃k},
the above optimization problem can be turned into linear program-
ming with (M +K) variables and (M + 1 + 2K) constraints:

min
ω,α

K∑
k=1

αk (4)

s.t. ωm ≥ 0 ∀m = 1, · · · ,M
M∑
m=1

ωm = 1

αk ≥ 0 αk ≥ c− ωTxk + ωT x̃k ∀k = 1, · · · ,K

We use the interior point method (Chapter 11 in [3]) to solve the
above linear programming problem.

Now, we have a weighted query-based meta-path set P′, each
Pm ∈ P′ is associated with corresponding weight ωm. We con-
sider this weighted combination of query-based meta-paths as the
LSR held in the query.
with positive examples. But we have demonstrated the effective-
ness by comparing that with the human provided negative examples
in the experiment.

4.2 Efficient RelSim-based Similarity Search
In schema-rich HINs, it is time consuming and impractical to

perform relation similarity search for online queries in the scope
of the whole network3. Notice that, most of relation instances do
not share any common meta-paths with the query, thus there is no
need to search all the possible relation instances in the HIN, which
is both time and space expensive.

After having the learned LSR, now we revisit our framework
shown in Figure 2, in Step 5, a fast RelSim-based relation similarity
search algorithm (FRS in Algorithm 2) is used to efficiently gener-
ate the search result ranked by the similarity scores computed using
RelSim. The intuition of the algorithm is that the search space can
be extremely pruned if we only search for the candidates that have
at least one common meta-path with the LSR. We build an inverted
index on meta-paths to speed up the searching process.

Algorithm 2: FRS(G, Q, QNSG, L, P′, ω).
input : A schema-rich HIN G = (V,E), a user query Q, the

query-based network schema QNSG = (Au,Ru), the
maximum query-based meta-path length L, the selected
meta-path set P′, and the weights ω of query-based
meta-paths in P′.

output : A ranked list RL of similar relation instances for Q.

CR← {}, RL← {}; // CR is the candidate relation instance set,1
RL is the final ranked list of similar relation instances
for v ∈ V do2

if φ(v) ∈ Au then3
A′(φ(v))← v; // A′ is the inverted index on entities4

for entity v ∈ A′(φ(v
(1)
k)) do5

for entity v′ ∈ A′(φ(v
(2)
k)) do6

P〈v,v
′〉 ← QMPG(〈v, v′〉, QNSG, L);7

for P ∈ P′ do8
if P ∈ P〈v,v

′〉 then9
CR← CR ∪ {〈v, v′〉};10

for candidate relation instance 〈v, v′〉 ∈ CR do11
simscore ← RS(Q, 〈v, v′〉);12
RL← RL ∪ {(〈v, v′〉, simscore)};13

SORT(RL, simscore);14
return RL;15

Given an HIN G = (V,E), a user query Q, the query-based
network schema QNSG = (Au,Ru), and the maximum length of
query-based meta-path L, FRS illustrates how we perform relation
similarity search for online queries, in order to return a ranked list
RL of similar relation instances.

First, we build an inverted index A′ on entities (Line 1-4). Sec-
ond, the candidate relation instances CR are generated (Line 5-
10), after enumerating all the entity pairs 〈v, v′〉 that share the same
entity types with the entities in query (i.e., φ(v(1)

k) and φ(v(2)
k)).

〈v, v′〉 is inserted into CR as a candidate, if the meta-path set
P〈v,v

′〉 (containing meta-paths for 〈v, v′〉) includes at least one
meta-path P ∈ P′. Next, we compute the relation similarity by
using RelSim RS(Q, 〈v, v′〉) defined in Def. 6, and sort the candi-
dates according to the similarity scores (Line 11-14). Finally, the
sorted list of candidates is returned (Line 15).

For example, two examples in Q in Figure 1 are characterized as
x1 = [1, 1, 2, 1, 3] and x2 = [1, 1, 0, 1, 1]. r′ = 〈Bill Gates, Paul
Allen〉, r′′ = 〈Steve Ballmer, Mark Zuckerberg〉 and r′′′ = 〈Steve
Jobs, Steve Wozniak〉 are retrieved as three candidates, where

3See https://groups.google.com/forum/#forum/freebase-discuss.

Relation Categories #Entities #Relations Examples
〈Organization, Founder〉 9,836,649 560,688,893 〈Google, Larry Page〉, 〈Microsoft, Bill Gates〉, 〈Facebook, Mark Zuckerberg〉
〈Book, Author〉 16,640,478 981,788,232 〈Gone with the Wind, Margaret Mitchell〉, 〈The Kite Runner, Khaled Hosseini〉
〈Actor, Film〉 4,340,986 182,121,412 〈Leonardo DiCaprio, Inception〉, 〈Daniel Radcliffe, Harry Potter〉, 〈Jack Nicholson, Head〉

〈Location, Contains〉 1,037,791 62,229,669 〈United States of America, New York〉, 〈Victoria, Chillingollah〉, 〈New Mexico, Davis House〉
〈Music, Track〉 1,653,931 86,658,343 〈My Worlds, Baby〉, 〈21, Someone Like You〉, 〈Thriller, Beat It〉

Total 26,841,657 1,483,834,223 〈Google, Larry Page〉, 〈Leonardo DiCaprio, Inception〉, 〈Thriller, Beat It〉

Table 2: Rel-Full dataset statistics. #Entities means the number of entities; #Relations means the number of relations.

x′ = [1, 0, 1, 2, 3], x
′′
= [0, 1, 0, 0, 0], x

′′′
= [1, 0, 3, 1, 2] char-

acterize them respectively. With the LSR ({wm,Pm}5m=1) ob-
tained in previous section, the similarity scores between Q and r′,
r′′, r′′′, are calculated based on RelSim (0.903, 0.483, and 0.827,
respectively). Thus, the ranking of each candidate in the result is:
〈Bill Gates, Paul Allen〉 (Rank-1), 〈Steve Jobs, Steve Wozniak〉
(Rank-2), and 〈Steve Ballmer, Mark Zuckerberg〉 (Rank-3).

In summary, our framework improves the efficiency of relation
similarity search in schema-rich HINs from four aspects: (1) Query-
based network schema is used to preserve a small part of the whole
network schema that is relevant to the query (Section 4.1.1); (2)
QMPG is proposed to speed up the procedure of query-based meta-
path generation (Section 4.1.2); (3) We use three criteria to select
important meta-paths, and reduce the search space (Section 4.1.3);
(4) An efficient relation similarity search algorithm uses inverted
index to further reduce the time cost (Section 4.2).

5. EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency of

our proposed approach.

5.1 Datasets
We use five subsets of Freebase data as our evaluation datasets.

We first construct a dataset called Rel-Full as follows: We se-
lect five popular relation categories in Freebase, 〈Organization,
Founder〉, 〈Book, Author〉, 〈Actor, Film〉, 〈Location, Contains〉,
and 〈Music, Track〉. For each relation category, we randomly sam-
ple 5,000 entity pairs, then enumerate all the neighbor entities and
relations within 2-hop of each entity. In Table 2, we show statistics
of the five relation categories in Rel-Full, including the number of
entities, relations, and some corresponding examples. We employ
Freebase API4 to crawl the Freebase network. The entities and re-
lations can be obtained by parsing the Freebase data in Json format.

Besides, for efficiency study, we generate four smaller datasets
based on Rel-Full: (1) Rel-100: contains 243,134 entities and
19,858,802 relations, generated based on 100 entity pairs (each re-
lation category has 20 entity pairs); (2) Rel-200: contains 561,389
entities and 32,519,062 relations, generated based on 200 entity
pairs (each relation category has 40 entity pairs); (3) Rel-500: con-
tains 991,498 entities and 103,681,534 relations, generated based
on 500 entity pairs (each relation category has 100 entity pairs); (4)
Rel-1000: contains 1,621,711 entities and 171,871,099 relations,
generated based on 1,000 entity pairs (each relation category has
200 entity pairs);

We randomly generate 10 user queries from each relation cate-
gory in Rel-Full by sampling 5 relation instances for each query.
As a result, there are 50 queries in total.

5.2 Effectiveness Study
We first study the effectiveness of our framework and query-

based meta-path generation algorithm.

4https://developers.google.com/freebase/v1/

5.2.1 Analysis of Similarity Search Performance
We herein test the performance of our framework for relation

similarity search. P@K (precision at K), NDCG@K are used as
the evaluation measures. P@K is the percentage of relevant results
at the given value of K in the search result. NDCG@K is the nor-
malized discounted cumulative gain at the given value of K in the
search result. Both measures assume value between 0 and 1, and a
higher value indicates a better search result. We use three baseline
systems as below.

(1) Vector-Space-Model-based Similarity Search (VSM-S): We
use the relation similarity function defined by vector space model
(VSM) [23] in our framework (Line 15 in FRS). Each relation in-
stance is represented using a vector of predefined lexical pattern
frequency. The relation similarity between two relation instances
is computed based on cosine similarity between the two vectors
representing the two relation instances.

(2) Latent-Relational-Analysis-based Similarity Search (LRA-S):
We use the relation similarity function defined by latent relational
analysis (LRA) [22] in our framework. First, a matrix is generated
with rows representing relation instances and columns representing
patterns. The value for the cell in ith row and jth column is the fre-
quency of the jth lexical pattern for ith relation instance collected
from the result of search engine. Then, singular value decompo-
sition (SVD) is applied to the matrix, which reduces the number
of columns. Finally, the relation similarity between two relation
instances is calculated using the cosine angle between two corre-
sponding rows in the matrix.

(3) ImplicitWeb-based Similarity Search (IW-S): The relation sim-
ilarity measure proposed in [2] is used in our framework. A super-
vised approach is proposed to learn a Mahalanobis distance metric
between relation instances. Each relation instance is represented
with a vector of lexical patterns. Next, a sequential pattern clus-
tering algorithm is used to cluster similar patterns. Finally, an
information-theoretic metric learning algorithm [5] is used to com-
pute the similarity.

We re-implement all of the above baseline systems, by replacing
the lexical patterns with query-based meta-paths. Notice that, we
apply the whole meta-path set P to VSM-S, LRA-S and IW-S. In
LRA-S, we reduce the size of P to 100 following [22]. While in
IW-S, we cluster the meta-paths with the same parameter setting in
[2].

We denote RelSim-WS the framework with RelSim as the sim-
ilarity measure, and the weight of each query-based meta-path in
P′ is learned by the optimization model. Further, RelSim-S is
RelSim-WS without weight learning by setting all each meta-path
with equal weight.

First, we manually label the top-20 results for the 50 queries, to
test the quality of ranking lists given by the five systems. We la-
bel each candidate relation instance with three relevant levels: 0
(non-relevant), 1 (some-relevant), and 2 (very relevant). We report
the average P@K and NDCG@K for the 50 queries. Notice that
P@K is evaluated based on whether the candidate is relevant (1
or 2) or not. Table 3 shows the quality of top-K (K = 5, 10, 20)

Query: {〈Google, Larry Page〉, 〈Microsoft, Bill Gates〉, 〈Facebook, Mark Zuckerberg〉, 〈Yahoo!, Jerry Yang〉, 〈DreamWorks Animation, David Geffen〉}
Rank VSM-S LRA-S IW-S RelSim-S RelSim-WS

1 〈Forbes, Forbes〉 〈Yelp, Inc., Simmons〉 〈Image Comics, Silvestri〉 〈DoubleClick, Merriman〉 〈Apple, Jobs〉
2 〈U-Haul, Shoen〉 〈Image Comics, Silvestri〉 〈Walt Disney, Disney〉 〈YouTube, Chen〉 〈IBM, Watson〉
3 〈HealthGrades, Hicks〉 〈U-Haul, Shoen〉 〈Forbes, Forbes〉 〈Apple, Wozniak〉 〈YouTube, Chen〉
4 〈Perot Systems, Perot〉 〈Forbes, Forbes〉 〈HealthGrades, Hicks〉 〈McDonald, McDonald〉 〈Linkedin, Hoffman〉
5 〈Image Comics, Silvestri〉 〈Perot Systems, Perot〉 〈New York Library, Dewey〉 〈Ford Motor, Ford〉 〈DoubleClick, Merriman〉

Table 4: Case study on top-5 relation similarity search results on Rel-Full.

P@5 P@10 P@20
VSM-S 0.4132 0.5657 0.7471
LRA-S 0.4414 0.6458 0.8292
IW-S 0.3627 0.4597 0.6047

RelSim-S 0.5778 0.7922 0.8416
RelSim-WS 0.6642 0.8383 0.8715

(a) P@K.

NDCG@5 NDCG@10 NDCG@20
VSM-S 0.5389 0.6296 0.7225
LRA-S 0.5880 0.6848 0.7814
IW-S 0.5210 0.6095 0.7010

RelSim-S 0.6395 0.7427 0.8432
RelSim-WS 0.6651 0.7716 0.9559

(b) NDCG@K.

Table 3: Performance of relation similarity search on Rel-Full.

search result. From the result, we can see that RelSim-based sys-
tems (RelSim-WS and RelSim-S) outperform the baseline systems.
The reasons are as follows: (1) RelSim-WS can better use the se-
mantics in schema-rich HINs because it automatically learns the
weights of different meta-paths; (2) Both RelSim-WS and RelSim-
S consider more subtle semantics by incorporating the number of
shared meta-paths of two relation instances, rather than just nor-
malizing the total number of meta-paths like most cosine based re-
lation similarity measures do (e.g., VSM-S); (3) Both RelSim-WS
and RelSim-S make use of three criteria (shown in Section 4.1.3) to
remove the noise in meta-paths to ensure most representative ones
are used to find similar relation instances. Significance is measured
using the t-test with p-value < 0.001.

Then, a case study on top-5 search result is shown in Table 4, un-
der the queryQ = {〈Google, Larry Page〉, 〈Microsoft, Bill Gates〉,
〈Facebook, Mark Zuckerberg〉, 〈Yahoo!, Jerry Yang〉, 〈DreamWorks
Animation, David Geffen〉}. Due to the space limitation, we just
show the last name of entities. The most likely LSR held in Q
is (1) the Founder of Organization, (2) who also wins award in the
same industry that the Organization runs business in. The two most
important query-based meta-paths below are used to represent the
LSR, Organization

is founded by−−−−−−−−−→ Founder (ω = 0.384), Organization
run business in−−−−−−−−−−→ Industry win award in−1

−−−−−−−−−−−→ Founder (ω = 0.274). From
the results, we can see that both RelSim-WS and RelSim-S get more
reasonable results than the baseline systems. Although the results
of the baseline systems contain the semantics (1) in Q, most of
them do not imply the semantics (2). For example, in the search re-
sult generated by IW-S, “Walt Disney” is not an IT company, but at
the second ranking position. The result shows that RelSim-WS gives
the best ranking quality in terms of the human intuition, which is
consistent with the previous result.

We further test our approach in a more realistic scenario. We
use human generated negative examples (five negative examples
for each query) to replace the randomly generated ones for learning

the weights using our optimization model. The results on the five
relation categories are NDCG@5 = 0.6968, NDCG@10 = 0.7976,
NDCG@20 = 0.9712. The results indicate the random negative
examples could hurt the search performance by accidentally intro-
ducing some errors (positive examples or useless ones), but it still
works in a relatively good manner.
5.2.2 Case Study of Query-based Meta-Paths

One of our major contributions is that by representing the LSRs
with a set of weighted query-based meta-paths, we are able to dis-
tinguish the diverse semantics of LSRs held in a user query.

Table 5a shows the top four (heavily weighted) meta-paths with
the corresponding weights, for six queries sampled from the five
relation categories5. We can see that all the important meta-paths
make sense. Besides length-1 meta-paths, we can derive multi-
hop meta-paths that are unexpected yet quite important semantics
held in the query. For example, given the query {〈Google, Larry
Page〉, etc.}, we can derive meta-paths like Organization run business in−−−−−−−−−−→

Industry win award in−1

−−−−−−−−−−−→ Founder with length larger than one, and it
is possible to find related relation instances w.r.t. the multi-hop
meta-paths. Interestingly, for queries that have complex semantics,
which can not be expressed with length-1 meta-paths, we could ex-
press the LSRs between them using multi-hop meta-paths, where
originally there are no connections between the entities. For ex-
ample, given the query {〈Lord Voldemort, J. K. Rowling〉, etc.},
there is no length-1 meta-paths connecting them, but we are able

to use Character
appear in−−−−−−→ Book write−1

−−−−−→ Author to explain the LSR
Character is in a Book, which is written by Author.

Moreover, we show a running example of the optimization model
by providing different queries containing some common examples,
as shown in Table 5b. In the query, 〈Google, Larry Page〉 implies
different LSRs, such as “is founded by” and “runs by CEO”, which
are represented with different weighted combination of meta-paths.
By providing different examples, such as 〈Microsoft, Bill Gates〉
(only satisfies “is founded by”) and 〈Yahoo!, Marissa Mayer〉 (only
satisfies “runs by CEO”), one can see that the meta-paths as well
as the weight of the same meta-path change accordingly, which
indicate the LSR changes from “is founded by” to “runs by CEO”.
The optimization model is able to distinguish the diverse LSRs.
5.3 Efficiency Study

Here, we investigate the efficiency of our framework. First, we
check the impacts of query-based network schema on the execution
time of FRS. We fix the maximum length of query-based meta-
paths to L = 4, and conduct experiments on datasets Rel-100, Rel-
200, Rel-500 and Rel-1000. We compare average execution time
over 50 queries with different diameter D (D = 1, 2, 3, 4). Each
query is executed 5 times, and the result is summarized in Figure 5.
RelSim-WS D and RelSim-WS-QNS represent the framework with
query-based network schema of diameter D and without query-
based network schema, respectively. From the result, one can see

5For category 〈Organization, Founder〉, we sample two queries
shown in Table 5b.

Query: {〈Harry Potter and the Philosopher’s Stone, J. K. Rowling〉,
〈The Lord of the Rings: The Return of the King, J. R. R. Tolkien〉, etc.} ω

Book
is part of−−−−−−→ Series write−1

−−−−−→ Author 0.569

Book win award−−−−−−−→ Award award winner−−−−−−−−−→ Author 0.213

Book
′s genre−−−−−→ Genre

written genre−1

−−−−−−−−−−−→ Author 0.134

Book is written in−−−−−−−−→ Location
is birthplace of−−−−−−−−−−→ Author 0.056

Query: {〈United States of America, New York〉, 〈United Kingdom, London〉, etc.} ω

Location1
in state−−−−−→ State

′s capital−−−−−−→ Location2 0.613

Location1

′s capital−−−−−−→ Location2 0.226

Location1

′s government−−−−−−−−−→ Government
′s jurisdiction−−−−−−−−−→ Location2 0.083

Location1

′s nationality−1

−−−−−−−−−−−→ Organization
is contained by−−−−−−−−−−→ Location2 0.049

Query: {〈Impulse, Oberdeck〉, 〈21, Someone Like You〉, etc.} ω

Music release−−−−−→ Track 0.477

Music make−1

−−−−−→ Person
same height−−−−−−−−→ Person

perform in−−−−−−−→ Video
play in TV−1

−−−−−−−−−→ Track 0.234

Music release−−−−−→ Album release−−−−−→ Track 0.09

Music release−−−−−→ Track List record−−−−→ Track 0.084
Query: {〈Jack Nicholson, Head〉, 〈Leonardo DiCaprio, Inception〉, etc.} ω

Actor act in−−−−→ Film 0.294

Actor act in−−−−→ Film
peformance type−−−−−−−−−−−→ Type

′s special−−−−−−→ Film 0.282

Actor award winner−1

−−−−−−−−−−−→ Award win award−1

−−−−−−−−−→ Film 0.179

Actor
perform in−−−−−−−→ Film 0.109

(a) Most important four query-based meta-paths of different queries.

Query: {〈Google, Larry Page〉, 〈Microsoft, Bill Gates〉, etc.} ω

Organization
is founded by−−−−−−−−−→ Founder 0.384

Organization run business in−−−−−−−−−−→ Industry win award in−1

−−−−−−−−−−−→ Founder 0.274

Organization
is founded by−−−−−−−−−→ Person

is influence peer−1

−−−−−−−−−−−−−→ Founder 0.174

Organization
′s leadership−−−−−−−−→ Person

mailing address−−−−−−−−−−→ Location
mailing address−1

−−−−−−−−−−−−→ Founder 0.115
Query: {〈Google, Larry Page〉, 〈Yahoo!, Marissa Mayer〉, etc.} ω

Organization
run by−−−−→ CEO

job title−−−−−→ Founder 0.32

Organization founded date−−−−−−−−−→ Date
graduation date−1

−−−−−−−−−−−−−→ Founder 0.229

Organization
headquarter−−−−−−−−→ Location education institute−−−−−−−−−−−−−→ Founder 0.207

Organization run business in−−−−−−−−−−→ Industry win award in−1

−−−−−−−−−−−→ Founder 0.113

(b) Query-based meta-paths generated based on different queries.

Table 5: Examples for query-based meta-paths on Rel-Full. We manually translate the relations from Freebase into natural language for better understanding.

Figure 5: Average query execution time of
FRS on four datasets with/without query-based
network schema.

Figure 6: QMPG vs. PCRW-MPG with differ-
ent maximum length on Rel-Full.

Figure 7: Parameter study of query-based net-
work schema with different diameters.

Figure 8: Parameter study of QMPG with dif-
ferent maximum lengths.

Figure 9: Parameter study of c in optimization
model.

Figure 10: Parameter study of different # of
examples (K) in query.

(a) Criterion 1 parameter θ1. (b) Criterion 2 parameter θ2. (c) Criterion 3 parameter θ3.

Figure 11: Parameter study of criteria.

(1) Query-based network schema improves the efficiency in time
nearly two orders of magnitudes. (2) The improvement rate is re-
lated to the diameter D. The larger D is, the improvement is more
significant. (3) The improvement depends on the number of candi-
date relation instances. The more candidates are, the improvement
is more significant.

Next, we compare the power of QMPG with the query-based
meta-path generation method proposed in [16] (PCRW-MPG) (Fig-
ure 6). We fix the diameter of query-based network schema D =
4, varying maximum length of query-based meta-path L (L =
1, 2, 3, 4) for both methods, and test on Rel-Full. Each query is ex-
ecuted 5 times and the output time is the total average time of the 50
queries. The results show that QMPG can significantly improve the
efficiency of query-based meta-path generation, by at most 89.6%
compared to PCRW-MPG.

5.4 Parameter Study
In this sub-section, we study the impacts of parameters on the

framework.
We first test the impact of various maximum query-based meta-

path length L (L = 1, 2, 3, 4) on query-based network schema
and QMPG. Figure 7 and Figure 8 show the relation between the
end-to-end search performance of our framework, with the various
diameters of query-based network schema and maximum query-
based meta-path lengths for QMPG, respectively. RelSim-WS D
(D = 1, 2, 3, 4) represents the RelSim-WS with different diame-
ters for query-based network schema generation. QMPG L (L =
1, 2, 3, 4) represents the QMPG with different maximum length of
meta-path. From the results, we can see that (1) with the larger
diameter D, the higher improvement query-based network schema
achieves. (2) The longer the maximum meta-path length L is, the

more improvement. In practice, we set D = 4 and L = 4, because
ifD and L get larger, the number of meta-paths will be prohibitive.

We next evaluate the three parameters of the criteria, θ1, θ2,
θ3, for query-based meta-path filtering. From the result in Fig-
ure 11, we can see that in general the larger value each parameter
has, the more improvement it can achieve. But it hurts the per-
formance when the value beyond certain threshold. The reason is
that a larger criterion threshold may accidentally filter out impor-
tant meta-paths. We set θ1 = 2, θ2 = 0.19, θ3 = 0.18 in our
experiments.

We then study the influence of the parameter in the optimization
model, c, on our framework. As illustrated in Figure 9, one can see
that with the larger c, the more it improves in general cases. We
experimentally set c = 0.95 because there is a slight slope after the
point. The reason is that when c < 1, the model will consider the
accident that positive and negative examples share the important
meta-paths, and that one of the important meta-paths is missing in
some positive examples.

Finally, we investigate the impact of the number of examples
(K) in query on the search results. Figure 10 shows that when
providing more similar examples in a query, the general end-to-end
performance will be improved more. In our experiment, we set
K = 5, because it is difficult to ask a user to provide too many
examples in real world.

6. RELATED WORK
Subgraph querying. There have been many works on subgraph

querying [11, 27, 29] based on traditional subgraph isomorphism
using identical label matching. However, we focus on the seman-
tic similarity of graph structure, which does not require identical

match. The subgraph querying is enriched with entity similarity
and ontology in [8, 24, 25]. A similarity matrix between query
entities and related ontology (or data entities) are assumed as in-
put, and the data nodes dissimilar with the query entities or related
ontology are filtered according to a threshold and ranked accord-
ingly. Our study provides a new perspective by using relation sim-
ilarity instead of entity or ontology-based similarity. The network
data for subgraph querying is often stored in relational databases,
graph databases or triplestores [15]. To retrieve data from these
databases, the standard is often to use structured query languages
such as SQL, SPARQL. However, writing structured queries re-
quires extensive experience in query language and data model, and
good understanding of particular datasets [12]. We do not assume
users have such domain knowledge. Instead, we only require users
to provide examples of relation instances.

Query by example. Query by example is well studied in rela-
tional databases. Querying paradigms for graphs can be catego-
rized into keyword-based [19], interactive and visual interfaces [6].
These works require structured queries, for example, query graphs
or patterns [28], meta-paths [21] or structured query languages, ex-
plicitly based on the known underlying schema. Recently, unstruc-
tured queries have been studied [13] without schema. In contrast,
our system allows unstructured queries as examples to query the
network by incorporating network schema. As a result, we relieve
the burden of users for providing structured queries, as well as im-
proving the quality of results by utilizing the knowledge about the
queries embedded in the network schema.

Similarity measures. Similarity measures have been a hot re-
search topic for years. They can be categorized broadly into two
types: entity similarity measures and relation similarity measures.
Similarity measures, such as SimRank [14], P-Rank [30], PathSim
[21], and PCRW [16] capture entity similarity. There exist works
on measuring relation similarity [18, 22]. They usually generate
a matrix with rows representing entity pairs and columns repre-
senting patterns, extracted from text data. Then certain similarity
function, like cosine similarity, is applied to calculate the relation
similarity by using the two corresponding rows in the matrix. We
improve these studies from two aspects: First, our approach distin-
guishes the diverse latent semantic relations existing in a relation
instance; Second, we are able to utilize the rich link information in
HINs.

7. CONCLUSION AND DISCUSSION
We study relation similarity search in schema-rich heterogeneous

information networks. In order to solve the problem, we need to (1)
correctly identify the most likely LSR implied by the input query,
and (2) provide an efficient search algorithm that can answer the
query in a real-time mode. We propose a framework to address the
two requirements. In the framework, we first represent an LSR as
a weighted combination of query-based meta-paths that are gener-
ated based on query-based network schema. Second, a novel meta-
path-based relation similarity measure RelSim is introduced and
used in an efficient similarity search algorithm. The experimental
results on the five real world datasets demonstrate the power of our
approach. Our approach can be used in many applications, such as
relation based clustering, classification and recommendation, etc..
For example, we can use RelSim in the clustering algorithms to
canonicalize similar relations.

8. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A

performance perspective. TKDE, 5(6):914–925, 1993.
[2] D. T. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring the

similarity between implicit semantic relations from the web. In
WWW, pages 651–660, 2009.

[3] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. The
Journal of Machine Learning Research, 12:2493–2537, 2011.

[5] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon.
Information-theoretic metric learning. In ICML, pages 209–216.
ACM, 2007.

[6] E. Demidova, X. Zhou, and W. Nejdl. Freeq: an interactive query
interface for freebase. In WWW, pages 325–328, 2012.

[7] X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In KDD, pages 601–610,
2014.

[8] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching.
TODS, 38(3):18, 2013.

[9] S. Gu, J. Yan, L. Ji, S. Yan, J. Huang, N. Liu, Y. Chen, and Z. Chen.
Cross domain random walk for query intent pattern mining from
search engine log. In ICDM, pages 221–230. IEEE, 2011.

[10] Z. S. Harris. Distributional structure. Word, 1954.
[11] H. He and A. K. Singh. Closure-tree: An index structure for graph

queries. In ICDE, pages 38–38. IEEE, 2006.
[12] H. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,

A. Nandi, and C. Yu. Making database systems usable. In SIGMOD,
pages 13–24. ACM, 2007.

[13] N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri.
Gqbe: Querying knowledge graphs by example entity tuples. In
ICDE, pages 1250–1253, 2014.

[14] G. Jeh and J. Widom. Simrank: a measure of structural-context
similarity. In KDD, pages 538–543, 2002.

[15] A. Khan, Y. Wu, and X. Yan. Emerging graph queries in linked data.
In ICDE, pages 1218–1221, 2012.

[16] N. Lao and W. W. Cohen. Relational retrieval using a combination of
path-constrained random walks. Machine learning, 81(1):53–67,
2010.

[17] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., 1997.
[18] P. Nakov and M. A. Hearst. Solving relational similarity problems

using the web as a corpus. In ACL, pages 452–460, 2008.
[19] J. Pound, I. F. Ilyas, and G. Weddell. Expressive and flexible access

to web-extracted data: a keyword-based structured query language.
In SIGMOD, pages 423–434, 2010.

[20] Y. Sun and J. Han. Mining heterogeneous information networks:
principles and methodologies. Synthesis Lectures on Data Mining
and Knowledge Discovery, 3(2):1–159, 2012.

[21] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta
path-based top-k similarity search in heterogeneous information
networks. VLDB, pages 992–1003, 2011.

[22] P. Turney. Measuring semantic similarity by latent relational analysis.
In IJCAI, pages 1136–1141, 2005.

[23] P. Turney, M. L. Littman, J. Bigham, and V. Shnayder. Combining
independent modules to solve multiple-choice synonym and analogy
problems. In RANLP, pages 482–486, 2003.

[24] V. Vassilevska and R. Williams. Finding, minimizing, and counting
weighted subgraphs. In STOC, pages 455–464. ACM, 2009.

[25] Y. Wu, S. Yang, and X. Yan. Ontology-based subgraph querying. In
ICDE, pages 697–708. IEEE, 2013.

[26] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins.
In ICDE, pages 916–927. IEEE, 2009.

[27] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, pages 335–346. ACM, 2004.

[28] X. Yu, Y. Sun, P. Zhao, and J. Han. Query-driven discovery of
semantically similar substructures in heterogeneous networks. In
KDD, pages 1500–1503. ACM, 2012.

[29] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing
method. In ICDE, pages 966–975, 2007.

[30] P. Zhao, J. Han, and Y. Sun. P-rank: a comprehensive structural
similarity measure over information networks. In CIKM, pages
553–562, 2009.

APPENDIX
ReSim satisfies properties (1) to (3).
• (1) Range: ∀r, r′, 0 ≤ sim(r, r′) ≤ 1. This is because
ωm, xm, x

′
m ≥ 0, and 2×min(xm, x

′
m) ≤ (xm+x′m) ∀m.

• (2) Symmetric: sim(r, r′) = sim(r′, r). This is because

min(xm, x
′
m) and xm + x′m are symmetric.

• (3) Self-maximum: sim(r, r) = 1. This is because 2 ×
min(xm, x

′
m) ≤ (xm + x′m).

	Introduction
	Preliminaries
	The Relation Similarity Search Problem
	RelSim: A Novel Relation Similarity Measure
	Problem Definition

	The Relation Similarity Search Framework
	LSR Learning
	Query-based Network Schema
	Query-based Meta-Path Generation Algorithm
	Criteria for Query-based Meta-Path Selection
	Optimization Model

	Efficient RelSim-based Similarity Search

	Experiments
	Datasets
	Effectiveness Study
	Analysis of Similarity Search Performance
	Case Study of Query-based Meta-Paths

	Efficiency Study
	Parameter Study

	Related Work
	Conclusion and Discussion
	References

