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• Links and types carry a lot of information!
• But traditional approaches are not using them
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piece of natural language text to a formal 
meaning representation.

Obama is the president of the United States of AmericaDocument

People.BarackObama PresidentofCountry.Country.USALogic form

• Motivation: [J. Berant et al. EMNLP’13] aim to train a parser from 
question/answer pairs on a large knowledge-base Freebase
• Existing semantic parsing approaches, that require expert annotation

• Scales to large scale knowledge-bases, supervised by the QA pairs

• No such training data for the document dataset.
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• One than one candidate logic forms could generate 
for each span of the input sentence, cannot rank.

• Unsupervised way
• A state-of-art named entity recognition tool [L. Ratinov et al. 

CoNLL 2009] is used to find only maximum spanning phrase.

• Only generate partial immediate logic form based on the 
maximum spanning phrase.

Text phrases are from 
ReVerb on ClueWeb09 
[Thomas Lin].

Entities are 
linked to 
Freebase. 

Binaries: 
paths of 
length 1 or 
2 in the KB 
graph.

Unaries: 
Type.x or 
Profession.x.

NOT ``America’’ or ``United States’’



John Smoltz came over to the 
Braves from the Tigers, but 
was developed by the Braves.

Semantic Parsing

Type.baseball_player proathlete_teams.Type.baseball_team

Documents Logic Forms

Type.tv_actor profession_specializations.Type.tv

Type.award_winner employment_company.Type.employer

Anyhow, the Braves did try to 
send Bob Horner to 
Richmond once.

Look at Smoltz's pitching line : 
6 hits , 2 walks , 1 ER , 7 SO 
and a loss .

proathlete_teams.Type.baseball_player

spouse_s.Type.person

Type.baseball_team roster_player.Type.baseball_player

Type.location contains.Type.location

Examples of Semantic Parsing on 20NG

13
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• Conceptualization based semantic filter (CBSF).

14

apple                 adobe

software company, brand, fruit brand, software company

software company, brand

P(    type | related entities     )

Song et al. Short text conceptualization using a probabilistic knowledgebase. IJCAI’11.

related entitiestype A cluster of entities of 
type features

largest probability
ones are selected

Assumption: correct semantic meaning can best fit the context.
Different entities can be used to disambiguate each other.



Semantic 

Filtering

John Smoltz:

Braves: Type.baseball_team

Type.baseball_player

Type.baseball_player proathlete_teams.Type.baseball_team

Logic Forms

Type.tv_actor profession_specializations.Type.tv

Type.award_winner employment_company.Type.employer

proathlete_teams.Type.baseball_player

spouse_s.Type.person

Type.baseball_team roster_player.Type.baseball_player

Type.location contains.Type.location

Filtered Semantics

Examples of Semantic Filtering on 20NG
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Constrained Clustering Modeling
Motivation: The framework of information-theoretic co-clustering (ITCC) 
[I. S. Dhillon et al. KDD’03] and constrained ITCC [Y. Song et al. TKDE’13].
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affect the document labels.
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The effect of different world knowledge
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Optimization algorithm with different 
numbers of iterations

Finding #2: larger number of 
iterations, the clustering improves 
more, and become stable.
Because it comes to convergence.

Clustering with world knowledge 
constraints

Finding #3: adding more and more 
constraints leading to better 
performance. Then become stable.
The entity sub-type information is 
transferred to the document side.

Finding #1: certain values of the 
number of entity clusters leading to 
the best clustering performance.

Clustering with different numbers of
entity clusters of each entity type
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World knowledge specification: unsupervised 
semantic parsing and conceptualization based 
semantic filtering.

Model
Constrained clustering model with the specified 
world knowledge represented in heterogeneous 
information network.
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