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the beginning of time would have been a point of infinite density and infinite curvature of space-time. All the known
laws of science would break down at such a point. One might suppose that there were new laws that held at
singularities, but it would be very difficult even to formulate such laws at such badly behaved points, and we would
have no guide from observations as to what those laws might be. However, what the singularity theorems really
indicate is that the gravitational field becomes so strong that quantum gravitational effects become important:
classical theory is no longer a good description of the universe. So one has to use a quantum theory of gravity to
discuss the very early stages of the universe. As we shall see, it is possible in the quantum theory for the ordinary
laws of science to hold everywhere, including at the beginning of time: it is not necessary to postulate new laws for
singularities, because there need not be any singularities in the quantum theory.

We don't yet have a complete and consistent theory that combines guantum mechanics and gravity. However, we
are fairly certain of some features that such a unified theory should have. One is that it should incorporate
Feynman's proposal to formulate quantum theory in terms of a sum over histories. In this approach, a particle does
not have just a single history, as it would in a classical theory. Instead, it is supposed to follow every possible path in
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conservative, implying he was more suitable
than other Republicans to go to /lead the
United States.
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Example: Knowledge Enabled Text Clustering

Feb
Obama OnlFeb.10, 2007 , Obamalannounced his ,{‘. .
pringfield,
— candidacy for President of the|United States| O1d State Illinois
candidacy in front of the Old State Capitol//ocated in Word
Springfield, lllinois.
President Document
Bush Bushiportrayed himself as a compassionate Location
portrayed —_amounced  conservative, implying he was more suitable ==~ .- Date
than other Republicans to go to lead the ? ~United @ rolitician
compassionate United States. States
Republi
Y Are the two documents belongto ~  “@F--___
lead ’
the same cluster? “politics” *" Bush

carry a lot of information!
But traditional approaches are not using them
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Unsupervised Semantic Parsing for Documents

Document Obama is the president of the United States of America

Semantic parsing is the task of mapping a
piece of natural language text to a formal
meaning representation.

Logic form People.BarackObama I PresidentofCountry.Country.USA

* Motivation: [J. Berant et al. EMNLP’13] aim to train a parser from
question/answer pairs on a large knowledge-base Freebase
* Existing semantic parsing approaches, that require expert annotation
* Scales to large scale knowledge-bases, supervised by the QA pairs

* No such training data for the document dataset.



Unsupervised Semantic Parsing for Documents

People.BarackObama [1 PresidentofCountry.Country.USA

intersection

People.BarackObama is PresidentofCountry.Country.USA
join
lexicon / ‘ \
Obama PresidentofCountry Country.USA
lexicon lexicon
president

United States of America
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People.BarackObama [1 PresidentofCountry.Country.USA
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Type.x or
Profession.x. |
Binaries:
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. length 1 or
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 Composition rules: Join (between binary and unary); [Thomas Lin].
Intersection (between unary and unary). president
United States of America

* Logic form construction: based on lexicon and .
composition rules recursively.



Unsupervised Semantic Parsing for Documents

People.BarackObama [1 PresidentofCountry.Country.USA

Unaries: intersection
Type.x or
Profession.x. |
Binaries:
Entities are People.BarackObama paths of is PresidentofCountry.Country.USA
linked to length 1 or _
2 in the KB Jjoin
Freebase. lexicon graph. / ‘ \
Obama PresidentofCountry Country.USA
* One than one candidate logic forms could generate
for each span of the input sentence, cannot rank : Text phrases are from :
’ ' lexicon | ReVerb on ClueWeb09 | lexicon
e Unsupervised way [Thomas Lin].

* A state-of-art named entity recognition tool [L. Ratinov et al. | president
CoNLL 2009] is used to find only maximum spanning phrase. |NOT ““‘America’”’ or “United States

* Only generate partial immediate logic form based on the
maximum spanning phrase.

»United States of America

12



Examples of Semantic Parsing on 20NG

Documents Logic Forms

Type.baseball player[T1 proathlete teams.Type.baseball team

Type.tv_actor[] profession_specializations.Type.tv

Type.award_winner [l employment_company.Type.employer

4 )
Type.baseball team M roster_player.Type.baseball player

Semantic Parsing

Type.location M contains.Type.location

o

N

J

proathlete teams.Type.baseball player

spouse_s.Type.person

13
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Semantic Filtering

* Conceptualization based semantic filter (CBSF).
Assumption: correct semantic meaning can best fit the[context. ]
Different entities can be used to disambiguate each other.

apple adobe

software company, brand, fruit brand, software company

8

software company, brand

P( type | EEENKZadI=Y )

A cluster of entities of
type features

14
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Semantic Filtering

* Conceptualization based semantic filter (CBSF).

Assumption: correct semantic meaning can best fit the[context. ]
Different entities can be used to disambiguate each other.

apple adobe
% N

software company, brand, fruit brand, software company

8

software company, brand

| EEEIEC R ES )

Song et al. Short text conceptualization using a probabilistic knowledgebase. IJCAI'11.

{Iargest probability

P( tvpe A cluster of entities of
ones are selected Yyp

type features
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Examples of Semantic Filtering on 20NG

Logic Forms

Type.tv_actorl1 profession_specializations.Type.tv

Y

pe.award_winner 'l employment_company.Type.employer

(I'ype.baseball_player M proathlete_teams.Type.baseball_team\

)

/
Type.baseball team M roster_player.Type.baseball player

Type.location "1 contains.Type.location

.

\

-

/

proathlete teams.Type.baseball player

spouse_s.Type.person

\

J

Filtered Semantics

John Smoltz:Type.baseball player

Semantic
Filtering

Braves:Type.baseball _team

15
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HIN: Network with multiple object types and/or multiple link types.

L ocated
Sergey ,I' . \ s Word
Brin “Document 2 Document
Stanford /GON Entrepreneur
TN, ———— T University
. Larry
Jerry /(ahoo! L _ Page ‘ Company
Yang -
ol |~ David Filo
—

Mail Document 1
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L_ocated
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Document 2 Document
model real
world data! Entrepreneur
M University
. Company

- —
Mail “5™ pocument 1

Y. Sun et al. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. PVLDB’11.
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[HIN: Network with multiple object types and/or multiple link types.]

Located Document
Sergey ~ @ word
A good way to Brin "__‘\‘__ “Document 2  Document Named
model real \ : Entity
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Document-based Heterogeneous

Information Network (HIN)

[HIN: Network with multiple object types and/or multiple link types.]

Located

A good way to Sergey /| . © word
Brin /I Document 2Document

model real )
world datal " By (m}‘\ Entrepreneur
- -=~" M University

“Larr
y . Company

I - Page
Yang -
<] i/ David Filo

- —
Mail © Document 1

Named
Entity
Type

Two entity types in
document-based HIN.

Document

Named
Entity
Type 2

[Network schema: High-level description of a network.

Y. Sun et al. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. PVLDB’11.

Represent the type of the
name in text, e.g, person
name.

NOT entity type (node type

in HIN).
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Constrained Clustering Modeling

Motivation: The framework of information-theoretic co-clustering (ITCC)
[I. S. Dhillon et al. KDD’03] and constrained ITCC [Y. Song et al. TKDE 13].
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Experiments

Name #(Categories) #(Leaf Categories) #(Documents)
20Newsgroups (20NG) 6 20 20,000
MCAT (Markets) 9 7 44,033
CCAT (Corporate/Industrial) 31 26 47,494
ECAT (Economics) 23 18 19,813

World knowledge bases

Name #(Entity Types) #(Entity Instances) #(Relation Types)  #(Relation Instances)
Freebase 1,500 40 millions 35,000 2 billions

publicly available knowledge base with entities and relations collaboratively collected by its community members.
YAGO2 350,000 10 millions 100 120 millions

a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.
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Document clustering with world knowledge as
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Problem

World knowledge specification: unsupervised
semantic parsing and conceptualization based
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Constrained clustering model with the specified
world knowledge represented in heterogeneous
information network.
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