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Application

Dialogue System

Knowledge graph has been applied to many applications



Knowledge Graph Completion

e Real-world knowledge graphs are usually incomplete
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Knowledge Graph Completion

e Real-world knowledge graphs are usually incomplete
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Knowledge graph completion is important for real-world applications
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Pretrained Language Models
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Pre-training

Fine-Tuning

Pretrained language models have enabled downstream transfer



Finetuning to Knowledge Graph Completion
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Finetuning requires high computational and storage resources
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PArameter-Lite Transfer (PALT)
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Finetuning PALT

Intuition: not all parameters need to be tuned for transfer "



PArameter-Lite Transfer (PALT)
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Prepare a proper context to recall knowledge and align the output distribution with the task of interest 12



Task Formulation
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Cloze-style statements trigger language models to produce general knowledge
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Knowledge Prompt Encoder
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Task-specific context helps to recall
relevant knowledge
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Knowledge prompt encoder provides task-specific context 14



Knowledge Calibration Encoder
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Pretrained language models tend to
be biased to common answers
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Knowledge calibration encoder aligns the pretraining distribution with downstream distribution
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Training

e Only tune parameter-lite encoders and keep PLM parameters fixed
e Training objective:
o NSP prediction about whether two sentences are correctly connected

NSP classifier
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Experiment Method WNI1 FBI3 | Avg

Task-specific models

NTN (Socher et al., 2013) 86.2 90.0 | 88.1
TransE (Bordes et al., 2013) 75.9 81.5 | 78.7
TransH (Wang et al., 2014) 78.8 83.3 | 8I1.1
TransR (Lin et al., 2015) 85.9 82.5 | 84.2
TransD (Ji et al., 2015) 86.4 89.1 | 87.8
TEKE (Wang and Li, 2016) 86.1 84.2 | 85.2
TransG (Xiao et al., 2016) 87.4 87.3 | 87.4
TranSparse-S (Ji et al., 2016) 86.4 88.2 | 87.3
DistMult (Yang et al., 2015) 87.1 86.2 | 86.7
DistMult-HRS (Zhang et al., 2020a) | 88.9 89.0 | 89.0
AATE (An et al., 2018) 88.0 87.2 | 87.6
ConvKB (Nguyen et al., 2018) 87.6 88.8 | 88.2
DOLORES (Wang et al., 2020b) 87.5 89.3 | 88.4
General models
KG-BERT (Yaoetal, 2019) _ _ _ | 935__ 90.4_| 9L9_
\PALTgasg (ous) | 933 913 | 923 ‘I
1PALT ARGE (ours) 93.8 91.7 | 92.8 ,

Triplet Classification

Our approach achieves state-of-the-art performance and is better than fully finetuning methods
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PALT achieves better performance than finetuning with only 1% tunable parameters
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Ablation Study

Method WNI11
PALTBASE 03.3
w/o Prompt 91.7
w/o Calibration,iqqie 92.2
w/o Calibrationy,g 93.0
w/o Calibrationy sy, 89.3
w/o Encoder 73.7
" Finetuning | 932

All components have a positive effect
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Conclusion

e We propose parameter-lite transfer (PALT) for knowledge graph completion
o Task formulation is important to use knowledge in language models
o Novel prompt encoders and calibration encoders which can be used for other models

e PALT achieves state-of-the-art performance
e |t should be useful for broad knowledge-intensive NLP applications
e Knowledge graph completion is a knowledge benchmark for language models
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Thank you for your time!

Code:https://github.com/yuanyehome/PALT
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https://github.com/yuanyehome/PALT

