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Structure prediction is important

Structure prediction has a wide range of applications in NLP area
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Structure prediction: Example

Input: Born in 1951 in Thilisi, lago is a Georgian artist.

Structure prediction tasks could have flexible output formats
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Traditional Understanding v.s. Structural Understanding
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Traditional Understanding ' 4 Structural Understanding



Traditional Understanding v.s. Structural Understanding

Input: Born in 1951 in Tbilisi, lago is a Georgian artist.

Traditional Understanding '

4 Structural Understanding

Next Word Prediction

. Born in 1951 in Thilisi,
- lago is a Georgian artist.

~ -
---------------------------------



Traditional Understanding v.s. Structural Understanding

Input: Born in 1951 in Tbilisi, lago is a Georgian artist.

4l Structural Understanding

Traditional Understanding ’

Next Word Prediction

. Born in 1951 in Thilisi,
- lago is a Georgian artist.

Predict single words



Traditional Understanding v.s. Structural Understanding

Input: Born in 1951 in Tbilisi, lago is a Georgian artist.

Traditional Understanding i 4l Structural Understanding
¥
Next Word Prediction .+ Joint-entity relation extraction
. Born in 1951 in Tbilisi, .+ Bornin 1951 in Thilisi, lago is a Georgian artist.
- lago is a Georgian artist. ~ : C city. of birth Leity  *person

Predict single words g B LR LR LR R R LR ’




Traditional Understanding v.s. Structural Understanding

Input: Born in 1951 in Tbilisi, lago is a Georgian artist.

4 Structural Understanding

Traditional Understanding .

\ 4
Next Word Prediction «+ Joint-entity relation extraction
. Born in 1951 In Thilisi, . Bornin 1951 in Thilisi, lago is a Georgian artist.
- lago is a Georgian artist. ~ : C city. of birth Leity  “person

Predict single words gl Predict structures




Traditional Understanding v.s. Structural Understanding

Input: Born in 1951 in Tbilisi, lago is a Georgian artist.

4 Structural Understanding

Traditional Understanding .

\
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. Born in 1951 in Tbilisi, .+ Bornin 1951 in Thilisi, lago is a Georgian artist.
- lago is a Georgian artist. ~ : C city. of birth Leity  *person

Predict single words gl Predict structures

Structural understanding can be more difficult than traditional understanding
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Why is structural understanding challenging for LMs?

Joint- entzty relation extraction

\
ﬁ - Born iIn 1951 in Thbilisi, lago is a Georgian artist.
C|ty of_birth tC"fy {person

Born in 1951 In Thbillisi,
lago is a Georgian artist.
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DeepStruct: Produce triples from text

Born in 1951 in Thilisi,
[ ] ] L] q q
lago is a Georgian artist.
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DeepStruct: Produce triples from text
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DeepStruct: Produce triples from text

Named entity recognition Joint-entity relation extraction
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Structure representation formulated as text-to-triple generation problem for LM
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DeepStruct: Format of output triples
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DeepStruct: Produce triples from text
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DeepStruct: Training

Task: Joint-entity relation extraction
Input: Born in 1951 in Thilisi, lago is a Georgian artist.
Desired Output: (lago, city_of_birth, Tbilisi), ...

A 4

Language Model
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[<s> jer: Born in 1951 in Tbilisi, Iago .. (Iago, city of birth, Tbilisi) .. ]

Input Sentence
DeepStruct concats input text and structure triple for autoregressive training
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DeepStruct: Produce triples from text

__________ Named entity recognition Joint-entity relation extraction
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DeepStruct: Training data

Task-agnostic Datasets Multi-task Datasets
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DeepStruct: Task-agnostic datasets

Dataset Source Dataset Statistics
6 publicly available datasets:

T-REXx ~ 51M sentences
TEKGEN ~ 134M entities
KELM ~ 114M relations (triples)
WebNLG
ConceptNet
OPIEC

DeepStruct is trained on a large task-agnostic corpus
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DeepStruct: Multi-task datasets
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~ 700K sentences
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DeepStruct supports a wide range of downstream applications
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Result: DeepStruct 10B vs GPT-3 175B
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DeepStruct 10B model remarkably outperforms GPT-3 175B model
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Result: 10 tasks and 28 datasets
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DeepStruct achieved state-of-the-art result on 21 of 28 datasets over 10 tasks
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Scaling Effect
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Larger model further improves DeepStruct performance
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Conclusion

DeepStruct: train LM to produce triples from text
DeepStruct 10B zero-shot model largely outperforms GPT-3 175B

State-of-the-art on 21 of 28 datasets over 10 tasks

Code: https://github.com/cgraywang/deepstruct

Thank you for your time and interest!
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https://github.com/cgraywang/deepex

