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Information Extraction (IE): extract structures from unstructured data
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Information extraction is crucial to many NLP applications
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We need a unified information extraction approach
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We need a unified information extraction approach
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The main issue of existing IE methods: limited transferability



Our approach: a unified framework for information extraction
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The basic idea: treat every information extraction problem as a “text-to-triple”
problem, I.e., translating input text to output triples
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Our method: text-to-triple translation
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Same text-to-triple translation is shared across tasks, the only difference is the
iInput encoding



An open information extraction (OIE) example
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An OIE example: input and output format

Input Text Output Triples
OIE
Born in Glasgow, Fisher is Born in Glasgow, . , Fisher, | (Fisher, born in, Glasgow]
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An OIE example: input and output format

Input Born in Glasgow, Fisher is a graduate of the London Opera Centre.
. . Encode task priors |
Born in Glasgowpp , Fisheryp is a graduate of the London Opera Centreyp
\

(Fisher; Born in; Glasgow)

Output (Fisher; is a graduate of; London Opera Centre)

Input and output are designed in a format that is appropriate for OIE
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An OIE example: zero-shot translation between input text and output triples

1.Generating

. Text-to-Triple

Translation

A
2. Ranking The common translation module

for all tasks is the key

By leveraging the task priors encoded in the input, we enable the zero-shot transfer of
the general knowledge that a pre-trained language model has about the task

10



An OIE example: generating triples from input text
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An OIE example: generating triples from input text

OIE Formulation: Extract a set of sequences from input that are relevant to an
argument pair

’ Argument pair ‘

\ Generating

Born in GIasgowNP , Fishery p is a graduate of the London Opera CentreNP

The generating stage produces general information about the task via pre-
trained language models



An OIE example: generating triples from input text

Beam search with language model attention weights, beam size=1

Input text with encoded task priors: Born in GIasgowNP , FisherNP is a graduate of the London Opera CentreNP
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relevance between the sequence and the argument pair




An OIE example: ranking the generated triples
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An OIE example: ranking the generated triples

Sequences are relevant not

Task-agnostic Contrastive Pre-training just in relation aspect

Task-agnostic Corpora j *
friple f,ins Triple 7, notin's - Sentence 5 r N > 0.2 (Fisher; born in; London Opera Centre)
. | ! . .
( BERT ) » Ranking | »>0.8 (Fisher; born in; Glasgow)
| | | Model »0.6 | (Fisher; is a graduate of; London Opera Centre)
[, embedding  #, embedding s embedding - o > 0.3 (Fisher; is a graduate of; Glasgow)
Positive pair ) N -: o .
—— v Top-2
( TrediCttV\'/h:C)h | 0*8 43: - e Finds the triples express (Fisher; born in; Glasgow)
sentence, triple) pair 8 [0 - - . . . o _ _
actually appeared Negative pair the relational information (Fisher; is a graduate of; London Opera Centre)

The ranking stage finds triples that are of interest to the task via a ranking model
pre-trained on a task-agnostic relational corpus
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An OIE example: decoding task predictions from output triples

Task Predictions

OIE
(Fisher, born in, Glasgow)

_ 4 (Fisher, is a graduate of,
London Opera Centre)
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An OIE example: decoding task predictions from output triples

(Fisher; Born in; Glasgow)

Output Triples (Fisher; is a graduate of; London Opera Centre)

¥ Decoding

(Fisher; Born in; Glasgow)

Task Predictions (Fisher; is a graduate of; London Opera Centre)

The framework encodes task priors in the input text and decodes the output
triples to finally produce task predictions.
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All iInformation extraction tasks Iin the same framework
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The framework encodes task priors in the input text and decodes the output
triples to finally produce task predictions
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Results: all three information extraction tasks

DeepEx (ours) DeepEx (ours)
DeepEx (ours)
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Open Information Extraction Relation Classification Factual Probe

Our unified approach achieves state-of-the-art or competitive results on all tasks
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Results: comparison between zero-shot (ours) and supervised performance

Zero-shot Zero-shot
o0 ’ DeepEx (ours) ’ DeepEx (ours)
Supervised ; Supervised
75 Methoa Methods
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68

------I
------ﬁ

ClauslE OpenlE4 PropS RnnOIE MAMA DeepEx 65
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Open Information Extraction Relation Classification

Our zero-shot approach outperforms fully supervised task-specific models on
open information extraction and relation classification
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Results: comparison between interpretable (ours) and blackbox results

Comparable Results
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by former Prime Minister Edward Heath at Salisbury. Interpretable DeepEx
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Factual Probe

Our approach delivers more interpretable results due to enhanced model
transparency
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Conclusion
Unified framework that solves
information extraction tasks
Competitive and state-of-the-art performance Zero-shot information extraction without
compared to fully supervised methods the need of any task-specific training set

DeepEXx
Better interpretability through enhanced Generalization by transferring the latent
model transparency knowledge that language models have
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Thank you for your time and interest!
Code: https://github.com/cgraywang/deepex
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https://github.com/cgraywang/deepex

