RelSim: Relation Similarity Search in Schema-Rich Heterogeneous Information Networks

Chenguang Wang, Yizhou Sun, Yanglei Song, Jiawei Han,

Yangqiu Song, Lidan Wang, Ming Zhang

Outline	
Motivation	The issues of previous HIN studies
RelSim	Compute the similarity between relation instances
Experiments	Achieve the-state-of-arts similarity search results on five datasets

Heterogeneous Information Networks

- HIN: Network with multiple object types and/or multiple link types, e.g., DBLP.
- Network schema: High-level description of a network.
- Meta-path: A path/link in the network schema.

Schema-Simple vs. Schema-Rich Heterogeneous Information Networks

- Previous studies: Schema-simple HINs
 - Similarity search in DBLP network: <u>four entity types</u> (Paper, Author, Venue, Term), and <u>several relation types</u>; easy to search: user provide relation(s)

Schema-Simple vs. Schema-Rich Heterogeneous Information Networks

- In real world: Schema-rich HINs
 - Similarity search in Freebase network: <u>1,500+ entity types</u> and <u>35,000+</u> <u>relation types</u>; hard to search: user CANNOT provide relation(s)

Schema-Simple vs. Schema-Rich Heterogeneous Information Networks

- In real world: Schema-rich HINs
 - Similarity search in Freebase network: <u>1,500+ entity types</u> and <u>35,000+</u> <u>relation types</u>; hard to search: user CANNOT provide relation(s)

Relation Similarity Search Problem

- 1. Users are asked to just provide a set of simple examples
- 2. We automatically detect the latent semantic relation (LSR) in the query for the users

Relation Similarity Search Example

Challenges president vs. secretary-of-state (0.45) is president of is secretary of state of 0 0 President → Country ← Secretary of State Q = {< Barack Obama, John Kerry>, *<Bill Clinton,* <George W. Bush, Condoleezza Rice>} Madeleine Albright> president vs. presidential candidate (0.15) is president of is presidential candidate of President — > Country < Presidential Candidate

- K
- Q. how to measure the similarity between relation instances by distinguishing diverse latent semantic relation(s)?

RelSim: A Relation Similarity Measure

RelSim: a meta-path-based relation similarity measure. Given an LSR $\{w_m, P_m\}_m^M = 1$, RelSim between r and r' is defined as

$$RS(\mathbf{r},\mathbf{r}') = \frac{2 \times \sum_{m} w_{m} \min(x_{m}, x'_{m})}{\sum_{m} w_{m} x_{m} + \sum_{m} w_{m} x'_{m}}$$

Semantic overlap: the weighted number of total

Compartie everlege the weighted number

meta-path-based relations satisfied by two instances

Intuition: <u>two relation instances are more similar when sharing</u> <u>more important (heavily weighted) meta-paths</u> Properties: Range, Symmetric, Self-maximum

Latent Semantic Relation Learning

Number of meta-paths could be very large

$$RS(\mathbf{r},\mathbf{r}') = \frac{2 \times \sum_{m} w_{m} \min(x_{m}, x'_{m})}{\sum_{m} w_{m} x_{m} + \sum_{m} w_{m} x'_{m}}$$

The weight/importance of each meta-path is different when query is different

 Meta-path candidates generation: enumerating all the possible metapaths between entities in large-scale networks is impractical;
Meta-path weights optimization: the real semantic meaning in a query is specific.

Meta-Path Candidates Generation

Query based network schema: a sub-network schema of a schema-rich HIN that only contains the entity and relation types that relevant to the query.

Query based meta-path generation algorithm: using binary search based on the query based network schema.

Meta-Path Weights Optimization

Intuition: Discover important query-based meta-paths by optimizing the weights.

e.g. <Larry Page, Sergey Brin> and <Jerry Yang, David Filo> share,

the later is a less important one (satisfy with randomly choosing instances).

Negative sample generation: since <u>there is a lot of background noise</u>. Randomly replacing the subject(object) entity of one instance by the subject(object) entity of another. e.g. <Larry Page, Paul Allen>

Meta-Path Weights Optimization

Inspired by the ranking loss, we propose the optimization model:

By introducing slack variables, the above optimization problem is turned into a linear programming with (M + K) variables and (M + 1 + 2K) constraints, solved by interior point method:

$$\min_{\substack{\omega,\alpha\\ \omega,\alpha}} \sum_{k=1}^{K} \alpha_k$$

s.t. $\omega_m \ge 0 \quad \forall m = 1, \dots, M \quad \sum_{m=1}^{M} \omega_m = 1$
 $\alpha_k \ge 0 \quad \alpha_k \ge c - \omega^T x_k + \omega^T \tilde{x}_k \quad \forall k = 1, \dots, K$

Experiments

- Datasets: five real world datasets are constructed based on Freebase
 - The largest one is **Rel-Full** dataset: five popular relation categories in Freebase are selected,
 - For each relation category, randomly sample 5,000 entity pairs, then enumerate all the neighbor entities and relations within 2-hop of each entity.

Relation Categories	#Entities	#Relations	Examples			
$\langle Organization, Founder \rangle$	9,836,649	560,688,893	(Google, Larry Page), (Microsoft, Bill Gates), (Facebook, Mark Zuckerberg)			
$\langle Book, Author \rangle$	16,640,478	981,788,232	B8,232 (Gone with the Wind, Margaret Mitchell), (The Kite Runner, Khaled Hosseini)			
(Actor, Film)	4,340,986	182,121,412	2 (Leonardo DiCaprio, Inception), (Daniel Radcliffe, Harry Potter), (Jack Nicholson, Head)			
$\langle Location, Contains \rangle$	1,037,791	62,229,669	(United States of America, New York), (Victoria, Chillingollah), (New Mexico, Davis House)			
$\langle Music, Track \rangle$	1,653,931	86,658,343	(My Worlds, Baby), (21, Someone Like You), (Thriller, Beat It)			
Total	26,841,657	1,483,834,223	(Google, Larry Page), (Leonardo DiCaprio, Inception), (Thriller, Beat It)			

Similarity Search Performance

Performance (NDCG@K) of relation similarity search on Rel-Full.

	NDCG@5	NDCG@10	NDCG@20
VSM-S	0.5389	0.6296	0.7225
LRA-S	0.5880	0.6848	0.7814
IW-S	0.5210	0.6095	0.7010
RelSim-S	0.6395	0.7427	0.8432
RelSim-WS	0.6651	0.7716	0.9559

Finding #1: Our methods outperform the other methods in a significant way using t-test with p-value < 0.001;

Finding #2: RelSim-WS can better use the semantics in schema-rich HINs because it automatically learns the weights of different meta-paths; Finding #3: Both RelSim-WS and RelSim-S consider more subtle semantics by incorporating the number of shared meta-paths of two relation instances.

Case Study of Meta-Paths

Example query-based meta-paths on Rel-Full. We show the most important four query-based meta-paths of different queries.

Finding: Optimization model is able to distinguish the diverse LSRs.

Conclusion				
Problem	Relation similarity search in schema-rich heterogeneous information networks.			
Approach	RelSim, to compute the semantic similarity between relation instances.			
Results	Our method performs the best on all the datasets.			

Thank You! 🙂