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Abstract
In knowledge bases or information extraction re-
sults, differently expressed relations can be seman-
tically similar (e.g., (X, wrote, Y) and (X, ’s writ-
ten work, Y)). Therefore, grouping semantically
similar relations into clusters would facilitate and
improve many applications, including knowledge
base completion, information extraction, informa-
tion retrieval, and more. This paper formulates re-
lation clustering as a constrained tripartite graph
clustering problem, presents an efficient clustering
algorithm and exhibits the advantage of the con-
strained framework. We introduce several ways that
provide side information via must-link and cannot-
link constraints to improve the clustering results.
Different from traditional semi-supervised learn-
ing approaches, we propose to use the similarity
of relation expressions and the knowledge of en-
tity types to automatically construct the constraints
for the algorithm. We show improved relation clus-
tering results on two datasets extracted from human
annotated knowledge base (i.e., Freebase) and open
information extraction results (i.e., ReVerb data).

Introduction
A relation triplet (e1, r, e2) is one popular form for knowl-
edge representation. For example, in a knowledge base,
such as Freebase1, a typical relation triplet contains e1 =
Larry Page, e2 = Google, and r = is founder of . This
means that two entities “Larry Page” and “Google” hold
the relation “is founder of.” With the recent developmen-
t of knowledge graph and open information extraction (open
IE) [Banko et al., 2007; Fader et al., 2011; Schmitz et al.,
2012], there are many cases where multiple relation expres-
sions indicate semantically similar relations.2 The ability to
group semantically similar relations into clusters would fa-
cilitate and improve many applications, including knowl-
edge base completion, information extraction, information re-
trieval, and more. Consider the following examples.

1https://www.freebase.com/
2We use relation expression to represent the surface pattern of

the relation. Sometimes they are of the same meaning.

Ex. 1: (X, wrote, Y) and (X, ’s written work, Y).
These two relations are identical, since the meaning of the

two expressions is the same when X and Y are instantiated.
This kind of relation clustering is very useful for predicate in-
vention [Kok and Domingos, 2007] and knowledge base com-
pletion [Socher et al., 2013; West et al., 2014], since we can
easily replace the entities (e.g., X or Y) of one relation with
the corresponding entities of another one, and use different
relation expressions to search for more entities.
Ex. 2: (X, is founder of, Y) and (X, is CEO of, Y).

These two relations are not the same, but they are more
similar than the case when compared to (X, wrote, Y). Iden-
tifying them as similar could be useful as an initial guess for
textual entailment [Dagan et al., 2013]. For example, if a text
contains “Larry Page founded Google on September 4, 1998,”
the following hypothesis is likely to be true: (Larry Page, is
CEO of, Google).
Ex. 3: (X, written by, Y) and (X, part of, Z)∧(Y, wrote, Z).

This example contains a multi-hop relation, which is a con-
junction of multiple relations. If we can find many entities to
instantiate such relations, we can group them together. When
we retrieve relations using entity pairs, we can interpret these
relations interchangeably. For example, we can use “Harry
Potter and the Philosopher’s Stone” and “J. K. Rowling” to
search the knowledge base and check the possible relation
expressions between them. We can then interpret (X, written
by, Y) as (X, part of, Z)∧(Y, wrote, Z), and the latter has more
information (e.g., we have Z = “Harry Potter Literary Series”)
about the relation between X and Y. In addition, identifying
the multi-hop relations allows hypothesizing possible rules
for knowledge inference [Richardson and Domingos, 2006].

All of the above examples boil down to a fundamental re-
lation clustering problem. Clustering can help us identify a
lot of such useful semantically similar relation expressions.
There have been several relation clustering algorithms pro-
posed, e.g., using one dimensional clustering (e.g., Kmean-
s) [Bollegala et al., 2009], co-clustering [Dhillon et al., 2003;
Bollegala et al., 2010], non-parametric Bayeisan model-
ing [Kemp et al., 2006], multi-relational clustering using
Markov logic network [Kok and Domingos, 2007; 2008], and
tensor decomposition based clustering [Sutskever et al., 2009;
Kang et al., 2012]. However, there is a major problem in the
previous work.

Previous approaches only considered clustering relation



expressions based on the intersection of the associated entity
sets. However, there exists important background knowledge
that can be used to improve clustering. For example, in both
relations (X, is founder of, Y) and (X, is CEO of, Y), the left
entity X should be a person and the right entity Y should be an
organization. If we can constrain the entity types, then some
illegitimate relations for a relation cluster can be filtered out.

In this paper, we propose a Constrained Tripartite Graph
Clustering (CTGC) algorithm to tackle this problem. We in-
troduce side information via must-link and cannot-link con-
straints to improve the clustering results. Then the type in-
formation about the entities can serve as an indirect supervi-
sion for relation clustering. To verify the indirect supervision,
we derive the constraints either from ground-truth of entities
and relations, or based on knowledge automatically induced
from the data. We use two real world datasets to evaluate the
clustering results. The first dataset is based on a human an-
notated knowledge base, Freebase. We generate constraints
based on the ground-truth types of entities and relations. This
dataset is used to demonstrate the effectiveness of the algo-
rithm. The second dataset is the data extracted by an open
IE system, ReVerb3. For this data, we generate entity con-
straints based on the results from a state-of-the-art named
entity recognizer [Ratinov and Roth, 2009], and the relation
constraints based on the similarity between relation expres-
sions. This dataset shows that the indirect supervision can be
automatically obtained. Even the constraints are not perfec-
t, the information can be used to improve relation clustering
results. Our contributions can be summarized as twofold:

• We formulate the relation clustering problem as a con-
strained tripartite graph clustering problem and develop
an alternating optimization algorithm to find the clusters
of relations.

• We use two datasets to demonstrate our approach: a
dataset with Freebase relations and a dataset with open
IE relations. The two datasets both show the effective-
ness of the clustering algorithm and the usability of real
applications.

Related Work
In this section, we discuss the related work from both problem
and algorithm perspectives.

Relation Clustering Problems
There has been a lot of work on relation extraction from text,
most of which are supervised or semi-supervised methods re-
lying on training data [Mintz et al., 2009; Chan and Roth,
2010; 2011; Li et al., 2011; Li and Ji, 2014]. Researcher-
s also considered using clustering to perform unsupervised
relation extraction [Hasegawa et al., 2004; Shinyama and
Sekine, 2006; Kok and Domingos, 2008; Yao et al., 2011;
Wang et al., 2013]. Some of the relation extraction algo-
rithms tried to find clusters among relation expressions be-
tween restricted types of named entities to discover unre-
stricted types of relations [Hasegawa et al., 2004; Shinya-
ma and Sekine, 2006; Riedel et al., 2013; Rocktäschel et al.,
2015]. This is similar to our approach when ours is applied

3http://reverb.cs.washington.edu/

to open information extraction [Banko et al., 2007; 2008;
Fader et al., 2011]. Nonetheless, there are two major dif-
ferences. First, they only considered relation types between
fixed types of named entities. However, most of the open do-
main relations are not restricted to named entities [Banko et
al., 2007]. Thus, our method is more flexible and extensi-
ble because we cluster the relations from open information
extraction directly based on the data statistics and only use
named entities as constraints. Second, besides relation extrac-
tion, our algorithm can also be applied to knowledge bases to
canonicalize different relations with clusters [Galárraga et al.,
2014], especially with multi-hop relations (shown in Ex. 3 in
the introduction). Therefore, we are trying to solve a more
general problem.

Relation Clustering Algorithms
As we mentioned in the introduction, there have been sev-
eral different formulations of the relation clustering problem
resulting in different algorithms. We solve the problem by
modeling the data as a tripartite graph clustering problem,
which incorporates more information than one-dimensional
clustering and co-clustering, and uses more condensed infor-
mation than tensor based clustering. Moreover, we incorpo-
rate constraints as side information into the tripartite graph
clustering problem. Such side information is in the forms of
must-links and cannot-links, which has been established and
proven to be effective in semi-supervised clustering [Basu et
al., 2008]. Constraints have been applied to one-dimensional
clustering [Basu et al., 2004; Lu and Leen, 2007] and co-
clustering [Shi et al., 2010; Song et al., 2013; Chang et al.,
2014] and tensor based clustering [Sutskever et al., 2009;
Kang et al., 2012], but haven’t been explored for tripartite
graph clustering problem. More interestingly, we explore how
to automatically generate the constraints instead of using the
human annotated knowledge.
Constrained Relation Clustering
In this section, we present our problem formulation and solu-
tion to constrained relation clustering.

Problem Formulation
Each relation triplet is represented as (e1, r, e2). Let the re-
lation set be R = {r1, r2, . . . , rM}, where M is the size of
R, and the entity set be EI = {eI1, eI2, . . . , eIVI

}, where VI

is the size of EI . E1, w.r.t. I = 1, represents the left enti-
ty set where e1 ∈ E1. E2, w.r.t. I = 2, represents the right
entity set where e2 ∈ E2. We also denote three latent label
sets Lr = {lr1 , lr2 , . . . , lrM }, and LeI = {leI1 , leI2 , . . . , leIV I

}
to indicate the clusters for relations and entities (two sets,
I ∈ {1, 2}), respectively.

Fig. 1 shows an example of constrained relation clustering
problem. The tripartite graph models the correlation among
the left entity set E1, the relation set R, and the right entity
set E2. In the figure, we illustrate four relation triplets: (Larry
Page, is founder of, Google), (Bill Gates, is creator of, Mi-
crosoft), (Gone with Wind, is written by, Margaret Mitchell),
and (The Kite Runner, is composed by, Khaled Hosseini). For
(Larry Page, is founder of, Google), e1

1 = Larry Page, r1 =
is founder of , and e2

1 = Google, the corresponding latent la-
bels are le11 = Person ∈ Le1 , lr1 = Leadership of ∈ Lr,



Le1 E1 R E2 Le2
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Figure 1: Illustration of the CTGC model. R: relation set; E1: left
entity set, a left entity e1i ∈ E1; E2: right entity set, a right entity
e2j ∈ E2; Lr: relation latent label set; Le1 : left entity latent label set;
Le2 : right entity latent label set.

and le21 = Organization ∈ Le2 , respectively. Then we build
a must-link between “is founder of” and “is creator of” if we
know they should belong to the same cluster (Leadership of ),
and build a cannot-link between “is founder of” and “is com-
posed by” if we know they are different. Besides, we build a
must-link for entities “Larry Page” and “Bill Gates” since the
types are the same (Person), while we build a cannot-link for
“Microsoft” and “Margaret Mitchell” since they have differ-
ent types (Organization and Person). We prefer to impose soft
constraints to the above relations and entities, since in prac-
tice, some constraints could be violated [Chang et al., 2012].

To formulate CTGC, we assume that the triplet join-
t probability can be decomposed as p(e1

i , rm, e2
j ) ∝

p(rm, e1
i )p(rm, e2

j ), where the joint probability of p(rm, eIi )
can be calculated based on the co-occurrence counts of
rm and eIi . We follow Information-Theoretic Co-Clustering
(ITCC) [Dhillon et al., 2003] and use

q(rm, e
I
i ) = p(r̂kr , ê

I
k
eI

)p(rm|r̂kr )p(eIi |êIkeI
), (1)

to approximate p(rm, eIi ) for the clustering problem. In E-
q. (1) , r̂kr

and êIkeI
are cluster indicators, kr and keI are

cluster indices.
ITCC minimizes the Kullback-Leibler (KL) divergence

DKL(p(R, EI)||q(R, EI)) to evaluate whether the co-
clustering produces a good result, where p(R, EI) and
q(R, EI) are multinomial distributions composed by
p(rm, eIi ) and q(rm, eIi ) respectively. Minimizing the KL
divergence means the approximate function should be as sim-
ilar as the original probabilities for co-occurrence between
entities and relations. In our problem, we use a combination
of two terms to evaluate our tripartite graph clustering:

DKL(p(R, E1)||q(R, E1)) +DKL(p(R, E2)||q(R, E2)). (2)

Since the relation indictor r̂kr in q(rm, eIi ) will be optimized
based on the combination of two terms, it will be affected by
both left- and right-side entity clusters.

To incorporate the constraints, we design three sets of cost
functions for Lr, Le1 , and Le2 . We take relation labels Lr as

an example, and entity labels (Le1 and Le2 ) are similarly de-
fined. For a label lrm , we denote the must-link set asMrm ,
and the cannot-link set as Crm . For must-links, the cost func-
tion is defined as

V (rm1 , rm2 ∈Mrm1
)

= am1,m2DKL(p(EI |rm1)||p(EI |rm2)) · Ilrm1
6=lrm2

,
(3)

where p(EI |rm1
) denotes a multinomial distribution

based on the probabilities (p(eI1|rm1), . . . , p(eIVI
|rm1))T , and

Itrue = 1, Ifalse = 0. The above must-link cost function
means that if the label of rm1

is not equal to the label of rm2
,

then we should take into account the cost function of how dis-
similar the two relations rm1

and rm2
are. The dissimilarity

is computed based on the probability of entities EI given the
relations rm1 and rm2 as Eq. (3). The more dissimilar the two
relations are, the larger cost is imposed.

For cannot-links, the cost function is defined as

V (rm1 , rm2 ∈ Crm1
)

= ām1,m2(Dmax −DKL(p(EI |rm1)||p(EI |rm2))) · Ilrm1
=lrm2

,

(4)
where Dmax is the maximum value for all the

DKL(p(EI |rm1)||p(EI |rm2)). The cannot-link cost function
means that if the label of rm1

is equal to the label of rm2
,

then we should take into account the cost function of how
similar they are. Moreover, am1,m2

and ām1,m2
are the trade-

off parameters.
Therefore, both must-links and cannot-links are soft con-

straints, which are related to the similarity between the re-
lations themselves. If the constraints are violated, then addi-
tional costs are added to the final objective function.

Integrating all the constraints for Lr, Le1 and Le2 to E-
q. (2), the objective function of CTGC is:

{Le1 ,Lr,Le2} = arg min
DKL

(
p(R, E1)||q(R, E1)

)
+DKL

(
p(R, E2)||q(R, E2)

)
+
∑M

rm1=1

∑
rm2∈Mrm1

V (rm1 , rm2 ∈Mrm1
)

+
∑M

rm1=1

∑
rm2∈Crm1

V (rm1 , rm2 ∈ Crm1
)

+
∑V1

e1i1
=1

∑
e1i2

∈M
e1
i1

V (e1i1 , e
1
i2 ∈Me1i1

)

+
∑V1

e1i1
=1

∑
e1i2

∈C
e1
i1

V (e1i1 , e
1
i2 ∈ Ce1i1 )

+
∑V2

e2j1
=1

∑
e2j2

∈M
e2
j1

V (e2j1 , e
2
j2 ∈Me2j1

)

+
∑V2

e2j1
=1

∑
e2j2

∈C
e2
j1

V (e2j1 , e
2
j2 ∈ Ce2j1 )

(5)
whereMe1i1

and Ce1i1 are the must-link and cannot-link sets
for entity e1

i1
labeled with le1i1

. Similarly, the label of entity

e2
j1

also has must-link and cannot-link sets, which are denoted
asMe2j1

and Ce2j1 , respectively.

Alternating Optimization
Since globally optimizing the latent labels as well as the ap-
proximating function q(rm, eIi ) is intractable, we perform an
alternating optimization shown in Algorithm 1. For each set
of labels, we first update the cluster labels based on the fixed
model function q(rm, eIi ). Taking the optimizing Lr as an ex-
ample, we use the iterated conditional mode (ICM) algorith-
m [Basu et al., 2004] to find the cluster labels. We update one
label lrm at a time, and keep all the other labels fixed:



Algorithm 1 Alternating Optimization for CTGC.
Input: Tripartite graph defined on relationsR, left entities E1 and
right entities E2; Set maxIter and maxδ.
while t < maxIter and δ > maxδ do
R Label Update: minimize Eq. (5) w.r.t. Lr .
RModel Update: update parameters in Eqs. (7-9).

E1 Label Update: minimize Eq. (5) w.r.t. Le1 .
E1 Model Update: update parameters in Eqs. (7-9).

R Label Update: minimize Eq. (5) w.r.t. Lr .
RModel Update: update parameters in Eqs. (7-9).

E2 Label Update: minimize Eq. (5) w.r.t. Le2 .
E2 Model Update: update parameters in Eqs. (7-9).
Compute cost change δ using Eq. (5).

end while

lrm = arg min
lrm=kr

DKL(p(E1|rm)||p(E1|r̂kr ))

+DKL(p(E2|rm)||p(E2|r̂kr ))
+
∑

rm′ ∈ Mrm ;
Ilrm 6=lr

m′

am,m′DKL(p(E1|rm)||p(E1|rm′ ))

+
∑

rm′ ∈ Mrm ;
Ilrm 6=lr

m′

am,m′DKL(p(E2|rm)||p(E2|rm′ ))

+
∑

rm′ ∈ Crm ;
Ilrm=lr

m′

ām,m′
(
D1

max −DKL(p(E1|rm)||p(E1|rm′ ))
)

+
∑

rm′ ∈ Crm ;
Ilrm=lr

m′

ām,m′
(
D2

max −DKL(p(E2|rm)||p(E2|rm′ ))
)
.

(6)

where the information of q(rm, eIi ) is incorporat-
ed into KL divergences DKL(p(E1|rm)||p(E1|r̂kr ))
and DKL(p(E2|rm)||p(E2|r̂kr )). To understand why
DKL

(
p(R, E1)||q(R, E1)

)
+ DKL

(
p(R, E2)||q(R, E2)

)
can be re-written as DKL(p(E1|rm)||p(E1|r̂kr )) +
DKL(p(E2|rm)||p(E2|r̂kr )), please refer to ITCC for more
details [Dhillon et al., 2003].

Then, with the labelsLr andLeI fixed, we update the mod-
el function q(rm, eIi ). The update of q is not influenced by the
must-links and cannot-links. Thus we can modify them the
same as ITCC [Dhillon et al., 2003]:

q(r̂kr , ê
I
k
eI

) =
∑

lrm=kr

∑
l
eI
i
=k

eI

p(rm, e
I
i ) (7)

q(rm|r̂kr ) =
q(rm)

q(lrm = kr)
[q(rm|r̂kr ) = 0 if lrm 6= kr] (8)

q(eIi |êIkeI
) =

q(eIi )

q(leIi
= keI )

[q(eIi |êIkeI
) = 0 if leIi

6= keI ]

(9)
where q(rm) =

∑
eIi
p(rm, e

I
i ), q(eIi ) =

∑
rm

p(rm, e
I
i ),

q(r̂kr ) =
∑

k
eI
p(r̂kr , ê

I
k
eI

) and q(êIk
eI

) =∑
kr
p(r̂kr , ê

I
k
eI

).
Algorithm 1 summarizes the main steps in the procedure.

The objective function (5) with our alternating update mono-
tonically decreases to a local optimum. This is because the
ICM algorithm decreases the non-negative objective func-
tion (5) to a local optimum given a fixed q function. Then
the update of q is monotonically decreasing as guaranteed by
the theorem proven in [Song et al., 2013].

The time complexity of Algorithm 1 is O((nnz + (nc ∗
iterICM )) · (Ke1 + Ke2 + Kr)) · iterAEM , where nnz is
the total number of non-zero elements in the entity-relation

co-occurrence matrix, nc is the constraint number, iterICM

is the ICM iteration number in the E-Step, Ke1 , Ke2 and Kr

are the cluster numbers, and iterAEM is the iteration number
of the alternating optimization algorithm.

Experiments
In this section, we evaluate the proposed approach on two real
world datasets.

Rel-KB and Constraints
Freebase is a publicly available knowledge base containing
over 2 billions relation expressions between 40 millions en-
tities. The Rel-KB dataset is constructed as follows: we se-
lect six popular one-hop relation categories in Freebase, i.e.,
Organization-Founder, Book-Author, Actor-Film, Location-
Contains, Music-Track, Person-Profession. Then, for each re-
lation category, we randomly sample 5, 000 entity pairs. For
each entity pair in the selected data, we enumerate all the
l = L/2-hop relations for each entity, and combine them to
generate the multi-hop relations within length-L (experimen-
tally, L = 4). Finally, we have 16, 516 relation expressions
with relation categories.4

Then, we derive relation and entity constraints from the
Rel-KB dataset. Based on Freebase, it is straightforward to
design constraints for both relations and entities.

Relation constraints. (1) Must-links. If two relations are
generated from the same relation category, we add a must-
link. For example, (X, ’s founder is, Z) ∧ (Z, is influence peer
of, Y) and (X, ’s founder is, Y) are generated from entity pair
(Google, Larry Page) and (Microsoft, Bill Gates). Both entity
pairs belong to Organization-Founder relation category. Thus
a must-link can be added to the two relations. (2) Cannot-
links. If two relations are generated from entity pairs with
different categories, we add a cannot-link to them.

Entity constraints. (1) Must-links. If two entities belong to
the same entity category, we add a must-link. (2) Cannot-
links. If two entities belong to different entity categories,
we add a cannot-link. For example, the entity categories of
“Google” and “My Worlds” are Organization and Music re-
spectively. In this case, we add a cannot-link to them.

Analysis of Clustering Results on Rel-KB
Here, we present the results on the Rel-KB dataset which has
gold standard for cluster labels of relation expressions. This
demonstrates the performance of our algorithm in the ideal
situation, since our constraints are derived based on the gold
standard provided by Freebase. We employ the widely-used
normalized mutual information (NMI) [Strehl and Ghosh,
2003] as the measure. The NMI score is 1 if the clustering re-
sults match the category labels perfectly and 0 if the clusters
are obtained from a random partition. In general, the larger
the scores are, the better the clustering results are.

We call our algorithm Constrained Tripartite Graph Clus-
tering (CTGC), and also denote the unconstrained version as
TGC. In this experiment, we compare the performance of
CTGC with that of several representative approaches such
as (1) one-dimensional clustering algorithms Kmeans and

4We assume all the relations generated with a certain entity pair
being within the same category as the gold standard.



(a) Effects of relation constraints. (b) Effects of entity constraints.

Figure 2: Comparison of relation clustering algorithms (six relation categories). Methods: Kmeans and constrained Kmeans (CKmeans),
Information-Theoretic Co-Clustering (ITCC) and Constrained ITCC (CITCC), Tensor Factorization based Clustering (TFBC). Our method
CTGC outperforms the other methods.

constrained Kmeans (CKmeans) [Basu et al., 2004], (2) co-
clustering algorithms ITCC [Dhillon et al., 2003] and Con-
strained ITCC (CITCC) [Song et al., 2013], and (3) multi-
relational clustering algorithm which is Tensor Factoriza-
tion based Clustering (TFBC)5 [Sutskever et al., 2009]. In
Kmeans, each relation expression is represented as an enti-
ty frequency vector. In co-clustering, the relation-entity co-
occurrence (only the left entity is used) is used as the evidence
of co-clustering. In three-dimensional tensor, an element in
the tensor simply represents a triplet (e1, r, e2) appearing in
the data. In our algorithm, we treat the data as a tripartite
graph, which condenses the tensor into two slices of matrices.
Similar to co-clustering, each relation expression can be asso-
ciated with multiple entities on both left and right sides. For
relation constraints, we generate both must-links and cannot-
links based on the method described before. In the follow-
ing experiments, both the relation and entity cluster numbers
are set to 6 (for both E1 and E2), the ground-truth number,
respectively. Moreover, the trade-off parameters am1,m2

and
ām1,m2 for constraints in Eqs. (3) and (4) are empirically set
to 1/

√
M for relations and 1/

√
VI (I ∈ {1, 2}) for entities

following [Song et al., 2013].
To compare the relation clustering results, we vary the

number of relation and entity constraints by randomly se-
lecting a fixed number of constraints from all possible must-
links and cannot-links to investigate their impacts on cluster-
ing performance. Fig. 2 shows the experimental results. The
x-axis in each sub-figure represents the number of relation
constraints used in each experiment and the y-axis represents
the averaged NMI value of five random trials.

As shown in Fig. 2(a), among all the methods we test, CT-
GC consistently performs the best. When there is no con-
straint, we can see that ITCC is better than Kmeans. The rea-
son is that the co-clustering algorithm ITCC considers the in-
formation which also takes entity clusters into account. More-
over, TFBC is better than ITCC since it considers both left
and right sides of entities clusters while ITCC only considers
one side of entities. Furthermore, our TGC is better than TF-
BC. This is because we condense the tensor into two slices

5We use the standard Tensor Toolbox for Matlab: http://
www.sandia.gov/˜tgkolda/TensorToolbox/.

of matrices which represent the tripartite graph. Tensor may
generate more wrong cluster assignments when the data is too
sparse. The CITCC outperforms the TGC method because T-
GC does not use any constraints. In Fig. 2(b), we can see
that CTGC significantly outperforms CITCC when we start
adding more constraints to TGC. In addition, we can see that
relation constraints can improve the clustering performance.
In general, the more relation constraints we add, the better the
clustering results are.

Fig. 2(b) shows the effect of entity constraints along with
the relation constraints. Besides the relation constraints which
are the same as the ones in Fig. 2(a), we also add 3, 000 (i.e.,
3K) and 6, 000 (i.e., 6K) entity constraints for CITCC and
CTGC respectively. We can see that entity constraints are
also very helpful for improving the relation clustering per-
formance. The reason is that entity clustering information is
transferred through the co-occurrence of entities and relations
to the relation side. In general, with more entity constraints,
the clustering results are better. Particularly, we see that when
there is no relation constraint, we can even boost the NMI
score from 0.69 to 0.85 with CTGC using only entity con-
straints. Therefore, it shows that even if we have little knowl-
edge about relations, we can still expect better results if we
know some knowledge about entities.

By looking into the clustering results, interestingly, in the
Music-Track cluster, CTGC could find the four-hop relation:
(X, made−1, Person) ∧ (Person, same height, Person) ∧ (Per-
son, perform in, Video) ∧ (Video, play in TV−1, Y), which
means the person who makes the music has the same height
with the person who performs in the music video of the
track.6 It is semantically similar to the Music-Track cluster
but we believe there should be very few (only one in our data)
entities which could instantiate this relation. Therefore, it is
very difficult to cluster this relation with the others. However,
by introducing the constraints, we know the entities instanti-
ating this relation are must-linked to other entities which have
relation expressions in the Music-Track cluster. This relation
is finally clustered in the Music-Track cluster.

6We use entity types instead of entities in the intermediate rela-
tions of a multi-hop relation to be more easily understood.



(a) Examples generated by TGC.
Organization-Founder (X, founded−1, Y); (X, was founded by−1, Y); (X, directed by, Y); (X, , led by, Y); (X, is established by, Y); (X, left−1, Y).

Book-Author (X, wrote−1, Y); (X, is a play by, Y); (X, is a book by, Y); (X, renamed to−1, Y); (X, is a poem by, Y); (X, born in−1, Y).
Actor-Film (X, star−1, Y); (X, feature−1, Y); (X, stars−1, Y); (X, who played, Y); (X, starred in, Y); (X, ’s capital in, Y).

Location-Contains (X, locate capital in, Y); (X, build ,Y); (X, is contained by−1, Y); (X, have, Y); (X, extend,Y); (X, competed for, Y).
Music-Track (X, released, Y); (X, containing, Y); (X, has a song, Y); (X, from−1, Y); (X, is popular in−1, Y); (X, painting, Y).

Person-Profession (X, is good at, Y); (X, referred to, Y); (X, major in, Y); (X, is a celebrity, Y); (X, is talent in, Y); (X, perform in, Y).

(b) Examples generated by CTGC.
Organization-Founder (X, founded by, Y); (X, led by, Y); (X, is the owner of−1, Y); (X, , sold by, Y); (X, , owned by, Y); (X, who left−1, Y).

Book-Author (X, is the author of−1, Y); (X, written by, Y); (X, edited by, Y); (X, composed by, Y); (X, is a fantasy novel by, Y); (X, writes−1, Y); (X,
composed−1, Y); (X, , who wrote−1, Y); (X, is a book written by, Y); (X, was developed by, Y).

Actor-Film (X, , which stars−1, Y); (X, act in, Y); (X, makes a brief appearance, Y); (X, , appears in, Y); (X, performed by−1, Y); (X, won best actor for, Y);
(X, , who played in, Y); (X, a movie starring−1, Y); (X, performed the title role in, Y).

Location-Contains (X, locate capital in, Y); (X, ’s capital in, Y); (X, is a department of−1, Y); (X, is a state of−1,Y); (X, ’s downtown, Y).
Music-Track (X, released, Y); (X, containing, Y); (X, was released in−1,Y); (X, is recorded in−1,Y); (X, , a record in−1,Y); (X, is a single of−1, Y); (X, is

a hit of−1, Y); (X, is a produce in−1, Y); (X, hit, Y); (X, a written work recorded in−1, Y).
Person-Profession (X, legend−1, Y); (X, retires from, Y); (X, ’s profession is, Y); (X, is famous in, Y); (X, win champion, Y); (X, play, Y).

Table 1: Examples of relation clusters from Rel-OIE. We use “-1” to represent the inverse order of the relation. Notice that, we have all the
cases generated by the other five clustering algorithms. Due to the space limitation, we only show the results of TGC and CTGC.

Rel-OIE and Constraints
In practice, the relations, entities, and constraints derived
from knowledge base are still limited. Therefore, we also de-
velop another dataset called Rel-OIE in a more realistic s-
cenario. We employ the open IE system, Reverb [Fader et
al., 2011], to generate relation triplets from Wikipedia sen-
tences containing at least one entity in Rel-KB.7 We do this
because Wikipedia text is cleaner compared to generic We-
b documents, and the sentences containing knowledge base
entities may have higher possibility to have the relations of
interests. In Rel-OIE, we have 137,674 unique relation ex-
pressions, 267,133 left entities, and 229,979 right entities.

Since in the open information extraction setting, we only
have the sentences in free text format, we construct the con-
straints using the following methods.

Relation Must-links. If the similarity between two rela-
tion phrases is beyond a predefined threshold (experimental-
ly, 0.5), we add a must-link to these relations. The similarity
here is defined as the token-based Jaccard similarity between
two phrases. For example, two phrases “’s founder is” and “’s
founder is influence peer of” share three common tokens and
thus they may both imply the same relation cluster. In this
case, we add a must-link between these two phrases.

Entity Must-links. If two entities are of the same named
entity type, we add a must-link to these entities. We use one
of the state-of-the-art named entity recognizers [Ratinov and
Roth, 2009], since it provides a larger number of types of
named entities (18 types trained based on Ontonotes).

Case Study of Clustering Results on Rel-OIE
We herein present some examples from Rel-OIE dataset. We
also cluster the relations into six clusters since we only extract
the relations from sentences containing the entities in the Rel-
KB dataset. In this case, it is easier for us to understand what
happened after clustering.

We show the clustering results of TGC in Table 1(a) and
the results of CTGC in Table 1(b). In general, the clustering
results of TGC and CTGC both make sense. For example,

7We do not use Ollie [Schmitz et al., 2012] because Reverb is
faster and with acceptable precision in our data.

in the Location-Contains cluster, CTGC as well as TGC find
similar relations, e.g., (X, locate capital in, Y), (X, is a state
of−1, Y).

The clustering results of CTGC seem much better. For ex-
ample, TGC does not cluster (X, locate capital in, Y) and
(X, ’s capital in, Y) together while CTGC does. By further
checking the data, we found the reasons for the better results
are: (1) there are relation must-links between (X, locate cap-
ital in, Y) and the other relation expressions such as (X, ’s
capital in, Y) in the cluster; (2) there are must-links between
entities which can instantiate the expressions, e.g., a must-
link between “America” and “China” (both are Geographi-
cal/Social/Political Entities (GPE) ), and a must-link between
“New York” and “Beijing” (both are GPE ). This proves the
importance of constraints for improving the clustering perfor-
mance in the noisy scenario.

Conclusion
In this paper, we study the relation clustering problem. We
model the relation clustering as a constrained tripartite graph
clustering problem, and propose to use side information to
help improve the clustering performance. We use two datasets
to demonstrate the effectiveness of our approach, and show
that this direction is promising.
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