Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks KDD'15 Sydney, Australia

Chenguang Wang, Yangqiu Song, Ahmed El-Kishky, Dan Roth, Ming Zhang, Jiawei Han ^K

Text Categorization

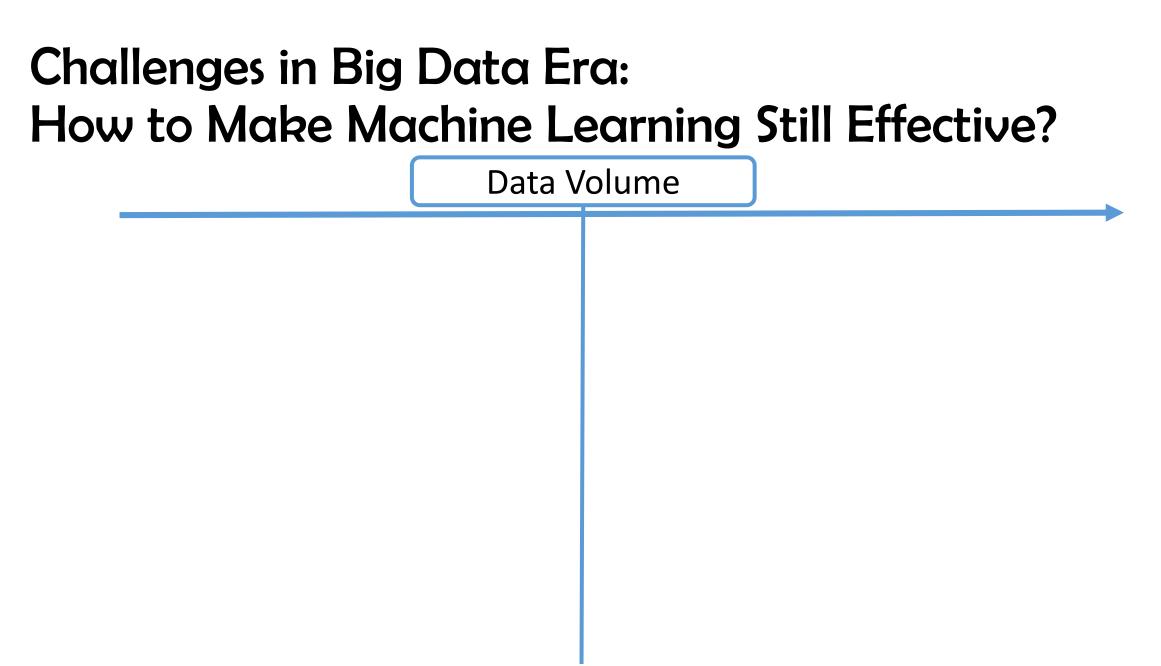
- A classical machine learning problem that impacts many applications!
 - Social network analysis, health care, machine reading ...
- Traditional approach:

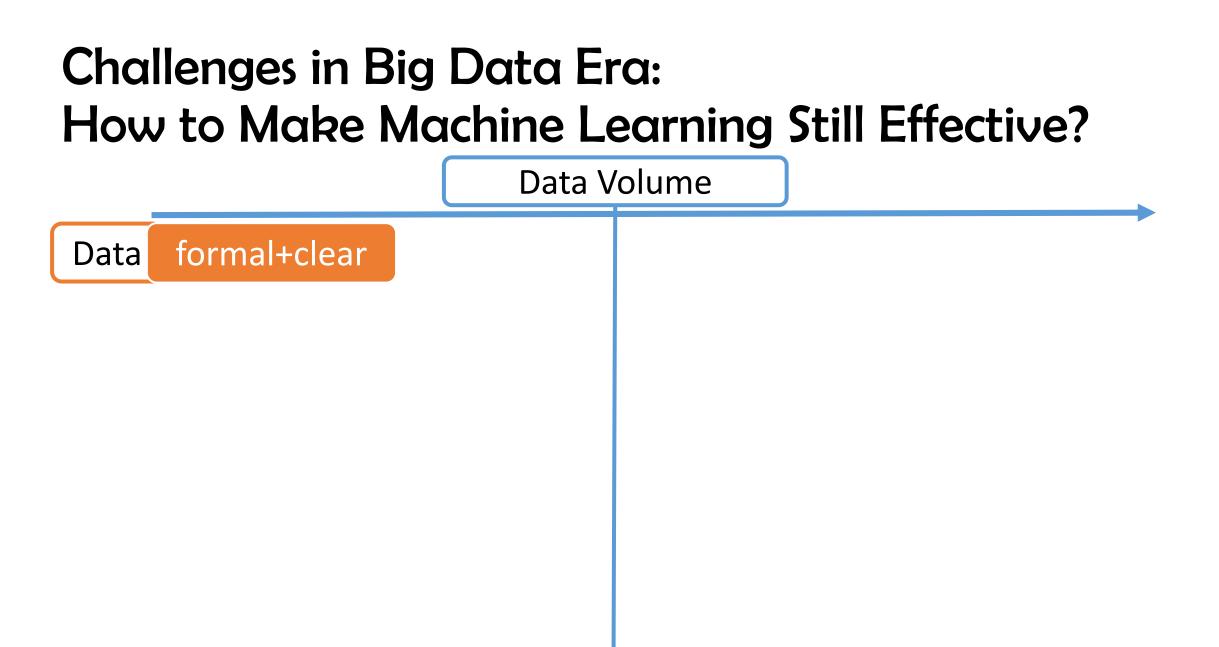
Text Categorization

- A classical machine learning problem that impacts many applications!
 - Social network analysis, health care, machine reading ...
- Traditional approach:

Text Categorization

- A classical machine learning problem that impacts many applications!
 - Social network analysis, health care, machine reading ...
- Traditional approach:





Data Volume

formal+clear

A BRIEF HISTORY OF TIME

the beginning of time would have been a point of infinite density and infinite curvature of space-time. All the known laws of science would break down at such a point. One might suppose that there were new laws that held at singularities, but it would be very difficult even to formulate such laws at such badly behaved points, and we would have no guide from observations as to what those laws might be. However, what the singularity theorems really indicate is that the gravitational field becomes so strong that quantum gravitational effects become important: classical theory is no longer a good description of the universe. So one has to use a quantum theory of gravity to discuss the very early stages of the universe. As we shall see, it is nossible in the quantum theory for the ordinary laws of science to hold everywhere, including at the beginning of time: it is not necessary to postulate new laws for singularities, because there need not be any singularities in the quantum theory.

e.g.,

articles

We don't yet have a complete and consistent theory that combines quantum mechanics and gravity. However, we are fairly certain of some features that such a unified theory should have. One is that it should incorporate Feynman's proposal to formulate quantum theory in terms of a sum over histories. In this approach, a particle does not have just a single history, as it would in a classical theory. Instead, it is supposed to follow every possible path in

Data Volume

Data

formal+clear e.g., articles

As we shall see, it is possible in the quantum theory for the ordinary laws of science to hold everywhere

Data Volume

Data fo

formal+clear e.g., articles

As we shall see, it is possible in the quantum theory for the ordinary laws of science to hold everywhere

informal+noisy

Data Volume

Data

formal+clear ^{e.g.,} articles

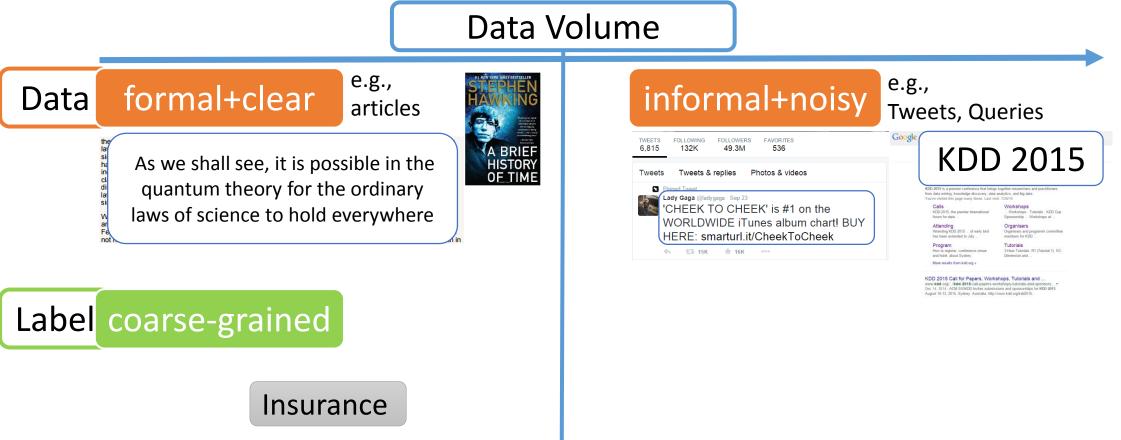
As we shall see, it is possible in the quantum theory for the ordinary laws of science to hold everywhere

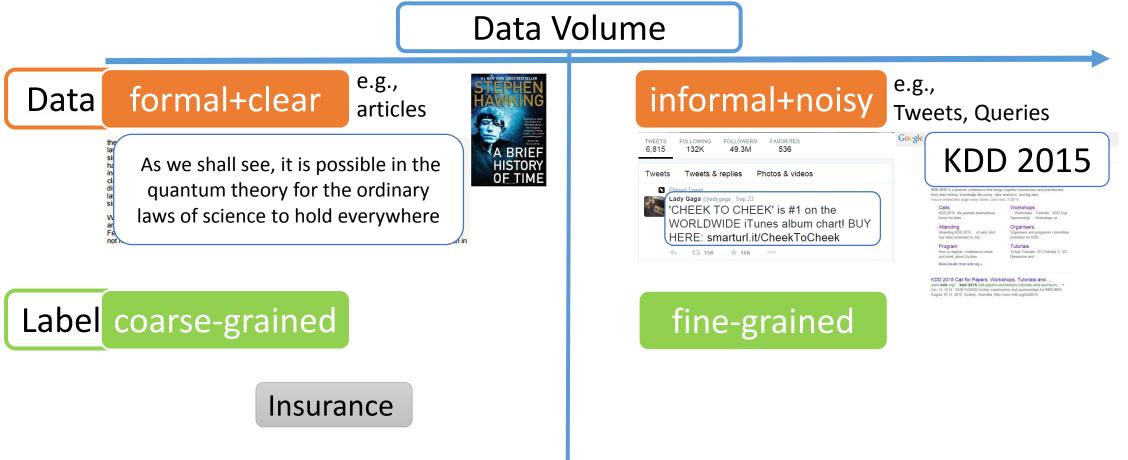


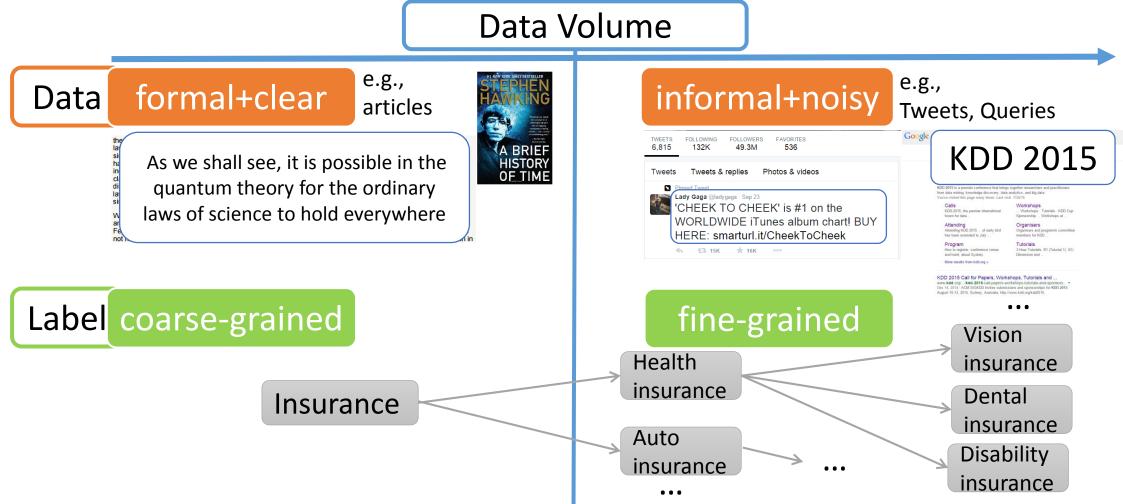
Label coarse-grained

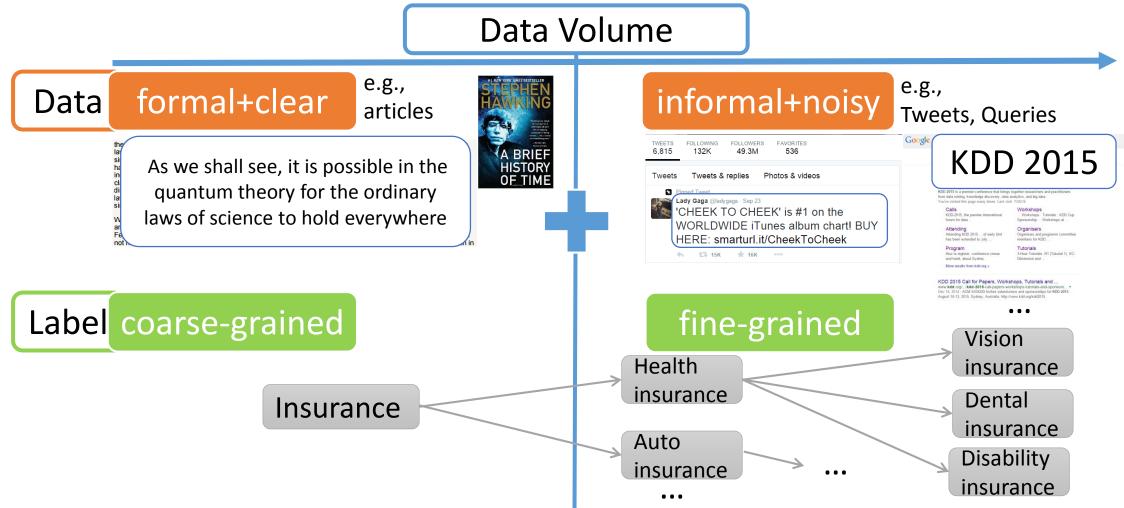
2014 - ACM SIGKOD Invites submissions and sponsorabips for KDD 2015 0-13, 2015, Sydney, Austalia, http://www.kdd.org/kdd2015.

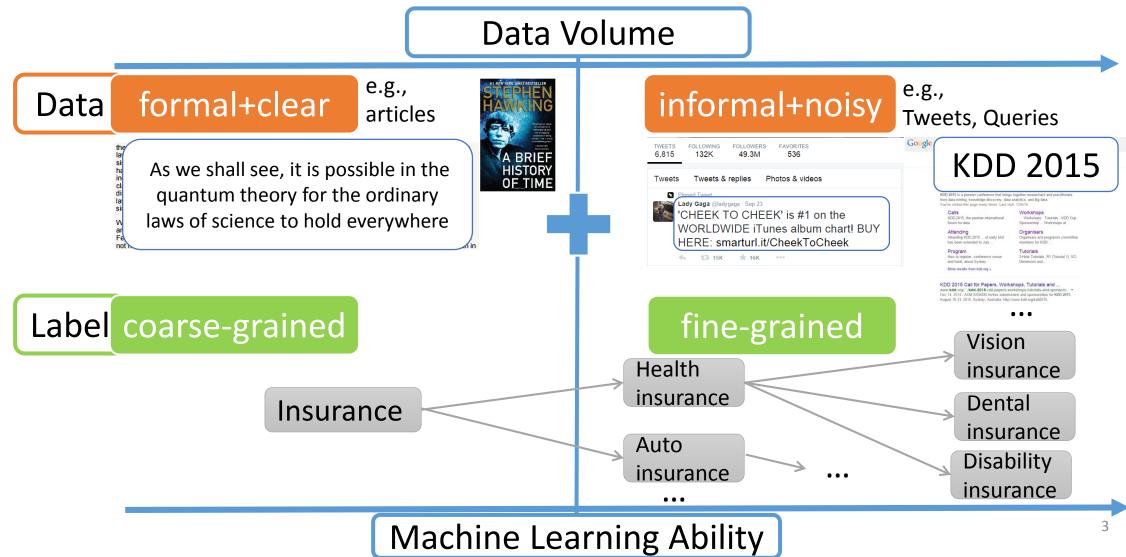
KDD 2015 Call for Papers, Workshops, Tutorials and

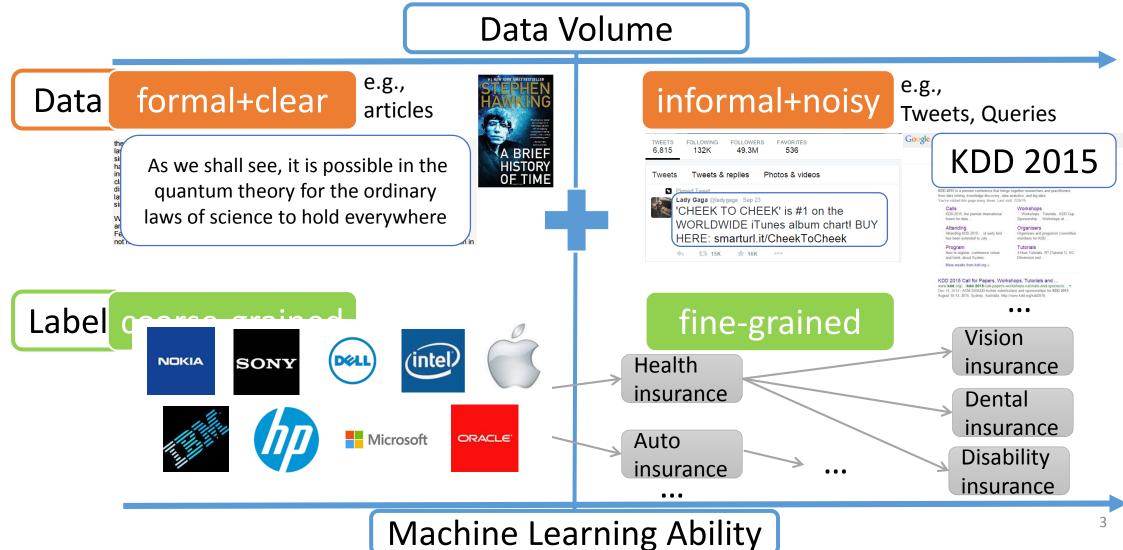




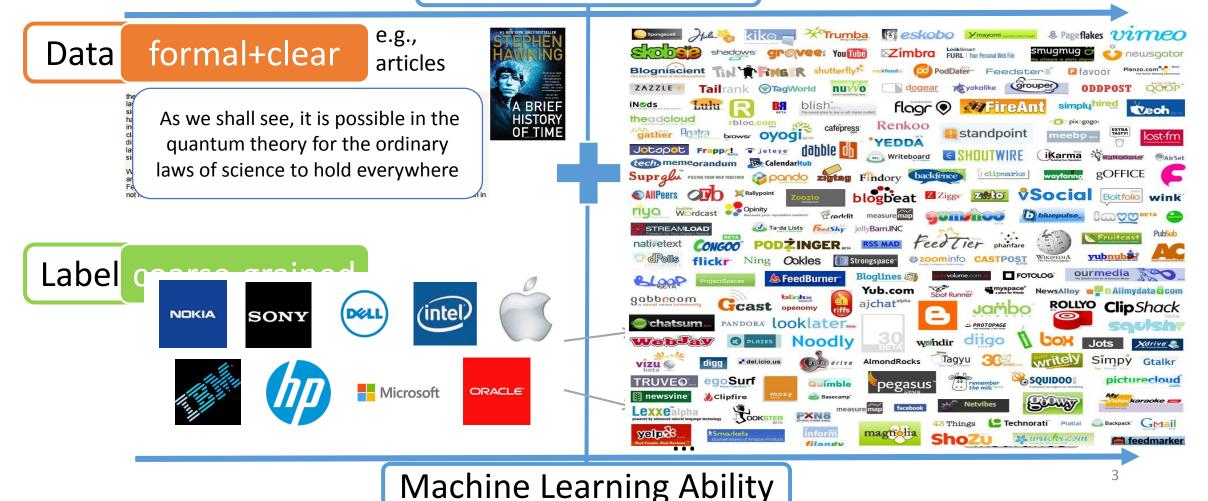


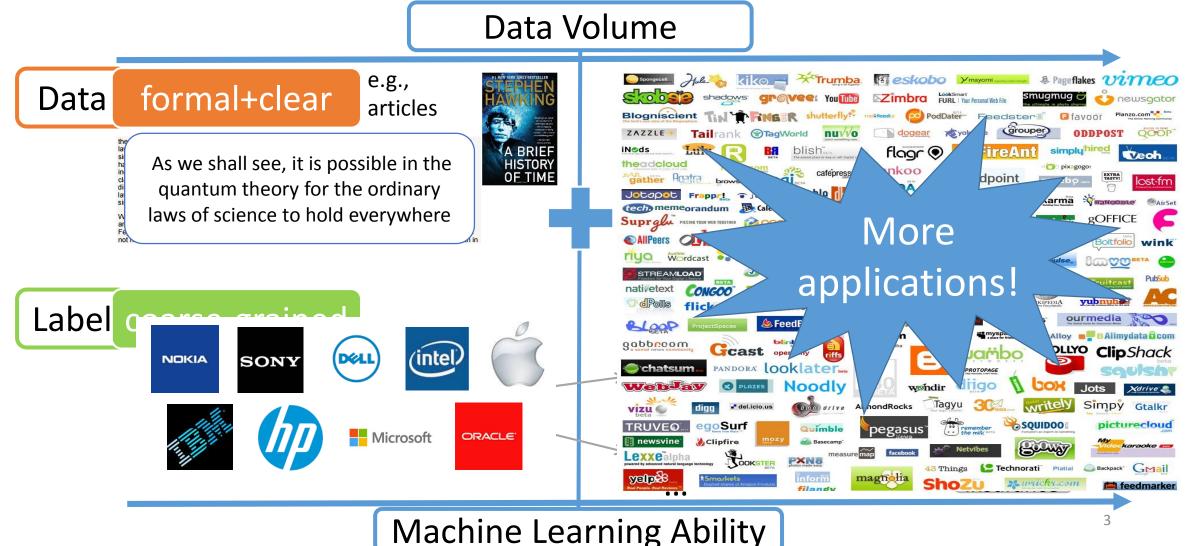




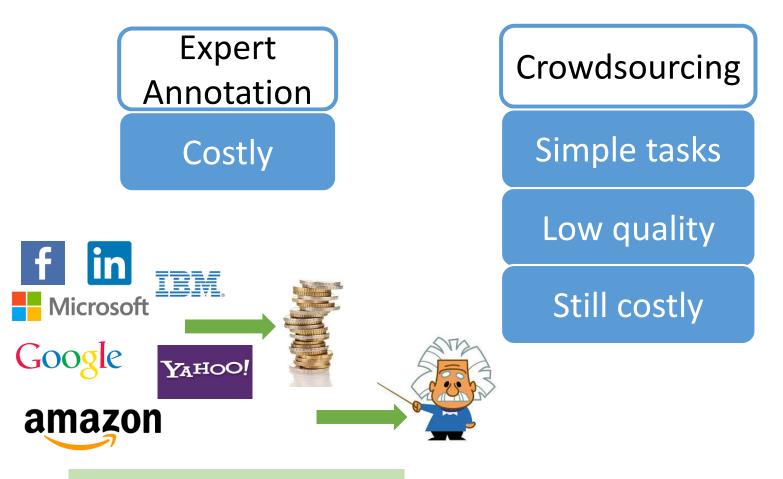


Data Volume

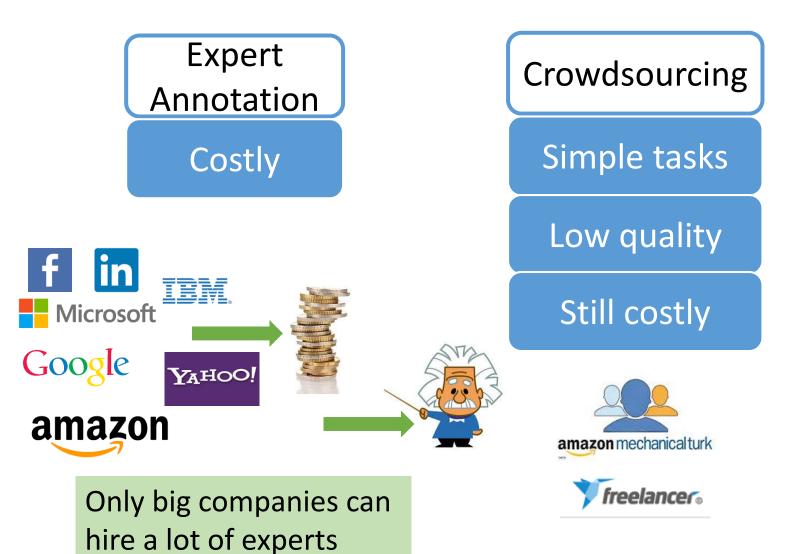


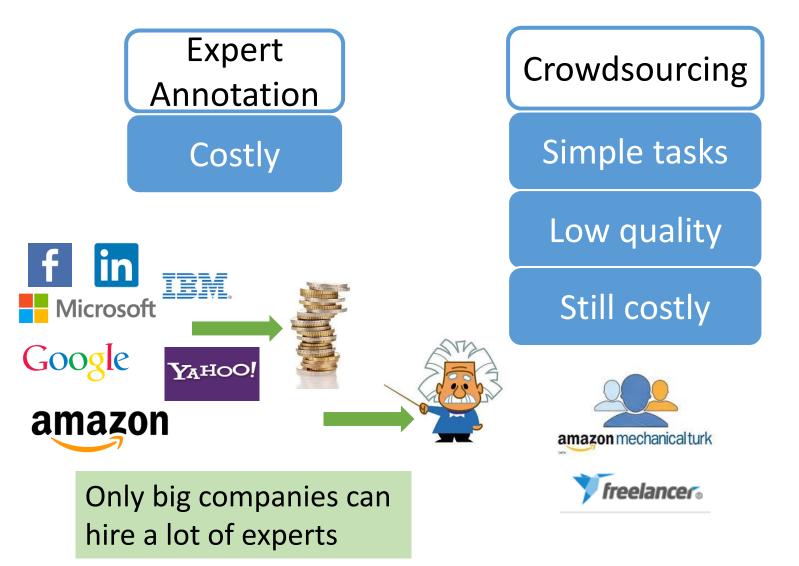


Only big companies can hire a lot of experts



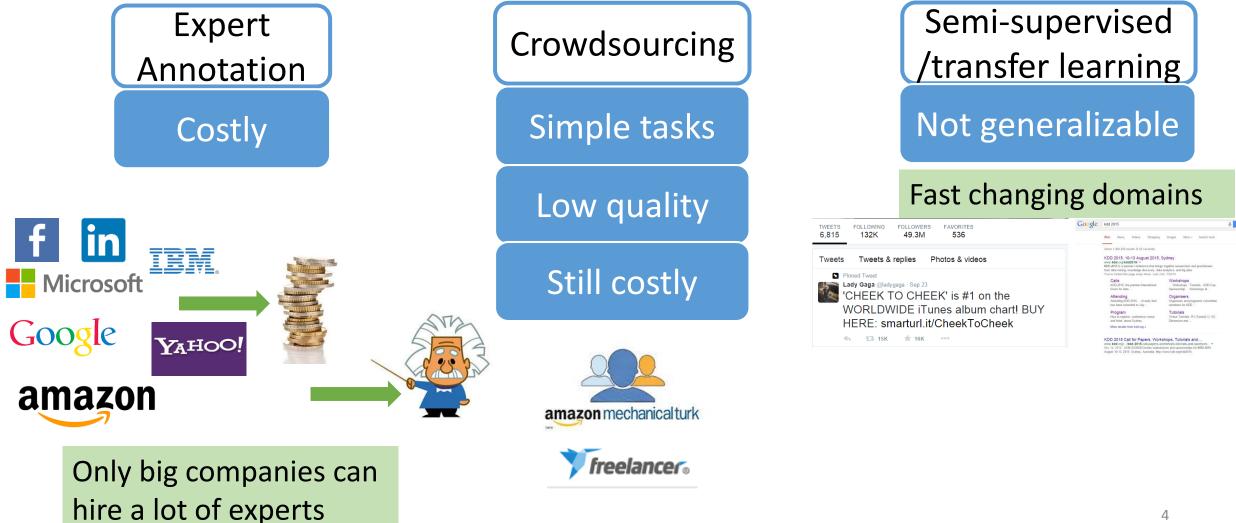
Only big companies can hire a lot of experts

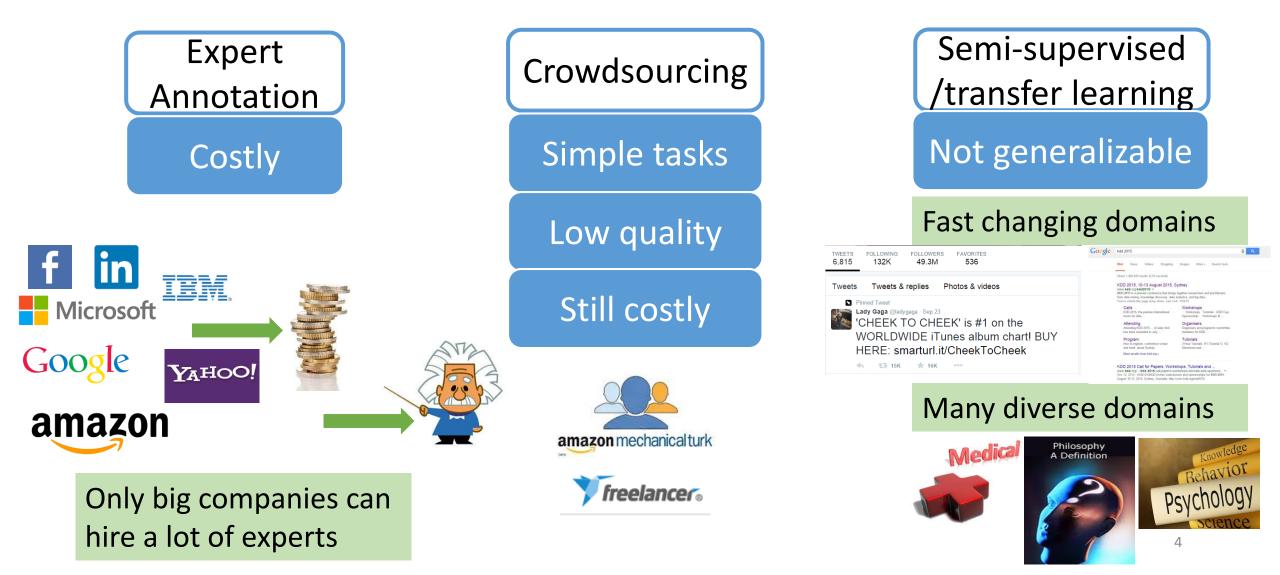




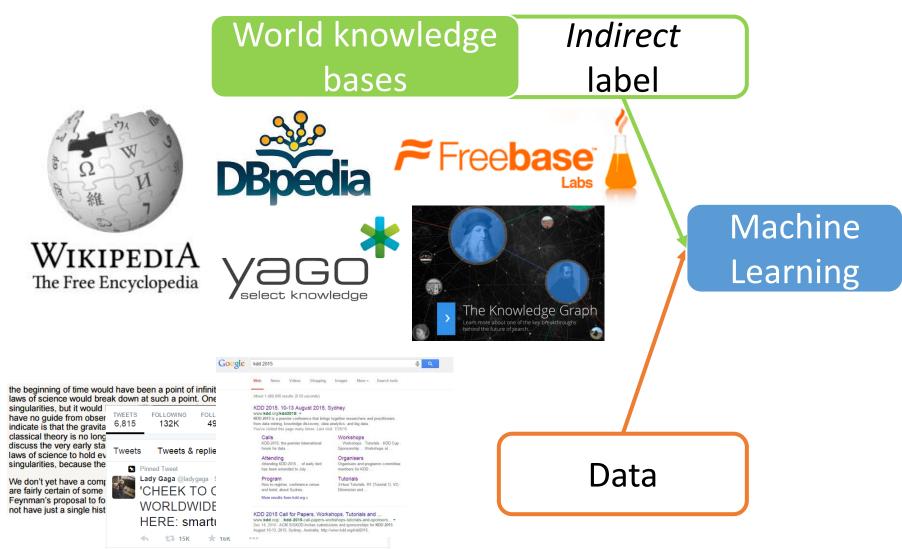
Semi-supervised /transfer learning

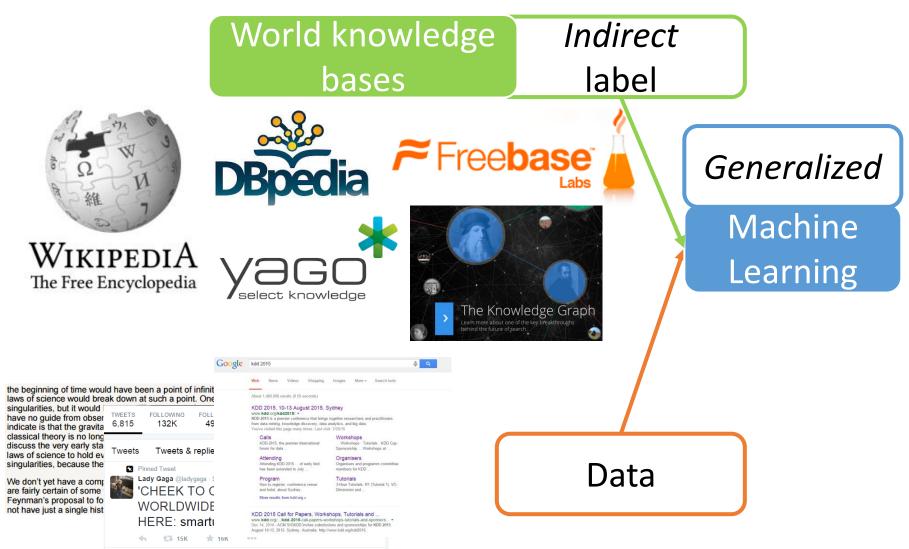
Not generalizable

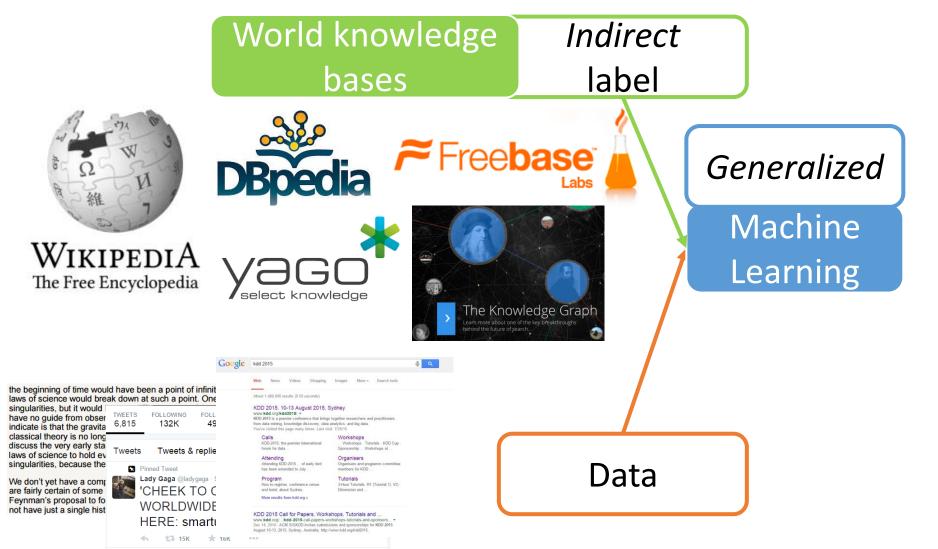




World knowledge bases

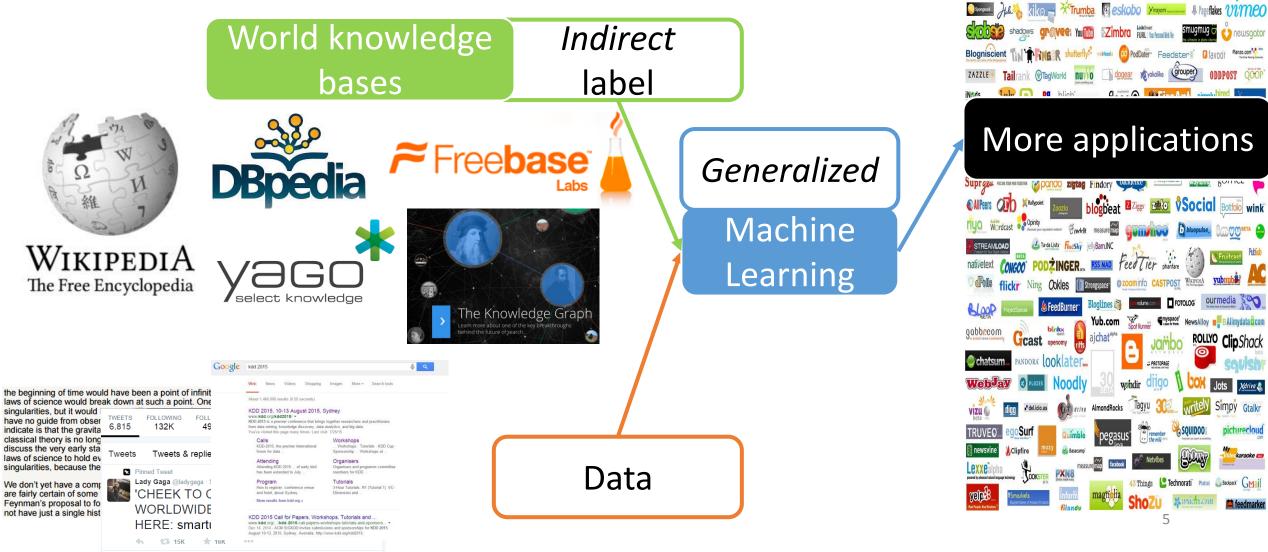




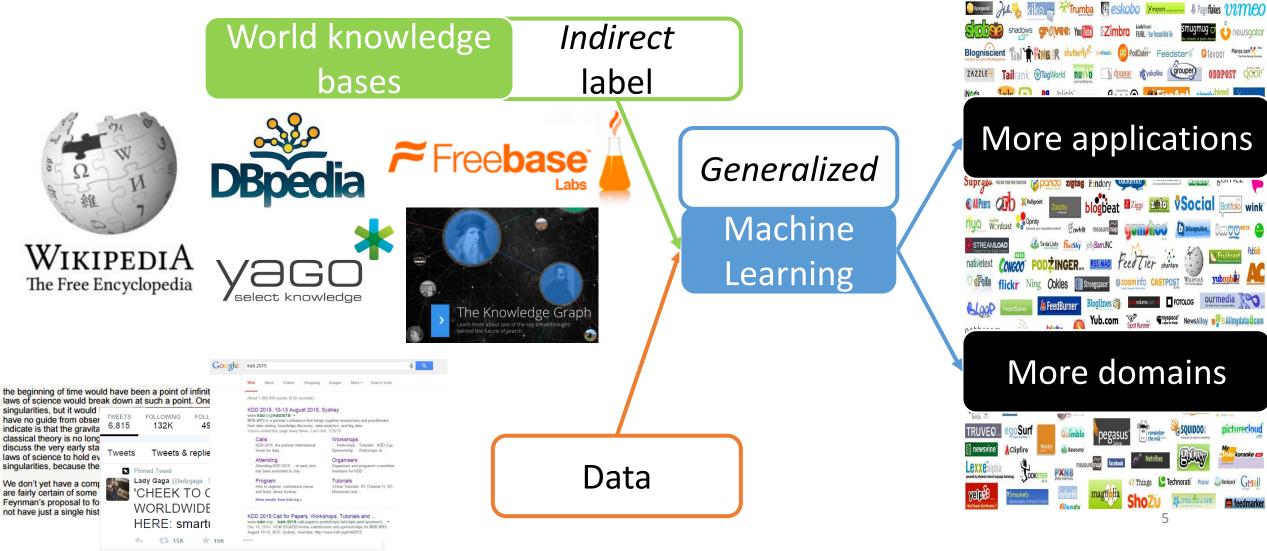


Trumba Reskobo Mayoni www. Spongecel Hule 🗞 KKO 🚔 shadows: grovee: You the Zimbra LookSmart FURL for Assaulted fie Blogniscient The The shutterly and a polaries Peedster | Blavoor Parce.com (grouper) DPOST QOOP dogear syokalike TagWorld nuv VO flagr () Veoh standpoint YEDDA iKarma 🔍 Writeboard 🛛 🗧 🏻 tech memeorandum Galendar Suprali PIELING YOUR WEB TOGETHER Wordcast STREAMLOAD CONGOO BLOOP lub.com NewsAllov gabbreom ROLLYO ClipShack GCast openomy 0 chatsum PANDORA look ater PROTOPA wondir Xdrive & Tagyu AlmondRocks ictureclou E Technorati Platial Backpack (Things yelpe

Knowledge Enabled Learning: use knowledge as indirect supervision



Knowledge Enabled Learning: use knowledge as indirect supervision



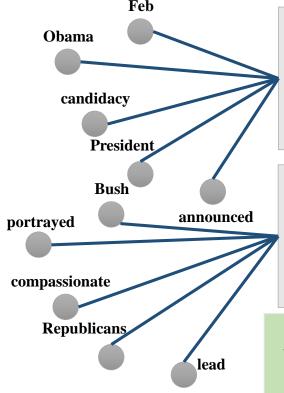
On Feb.10, 2007, Obama <u>announced</u> his candidacy for <u>President of</u> the United States in front of the Old State Capitol <u>located in</u> Springfield, Illinois.

Bush portrayed himself as a compassionate conservative, *implying he was* more suitable than other Republicans to go to *lead* the United States.

On Feb.10, 2007, Obama <u>announced</u> his candidacy for <u>President of</u> the United States in front of the Old State Capitol <u>located in</u> Springfield, Illinois.

Bush portrayed himself as a compassionate conservative, *implying he was* more suitable than other Republicans to go to *lead* the United States.

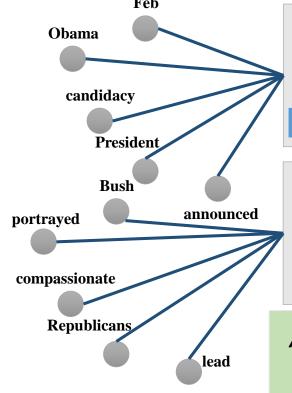
Are the two documents belong to the same cluster?



On Feb.10, 2007, Obama <u>announced</u> his candidacy for <u>President of</u> the United States in front of the Old State Capitol <u>located in</u> Springfield, Illinois.

Bush portrayed himself as a compassionate conservative, *implying he was* more suitable than other Republicans to go to *lead* the United States.

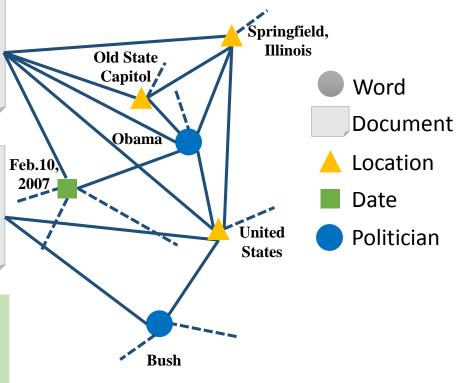
Are the two documents belong to the same cluster?

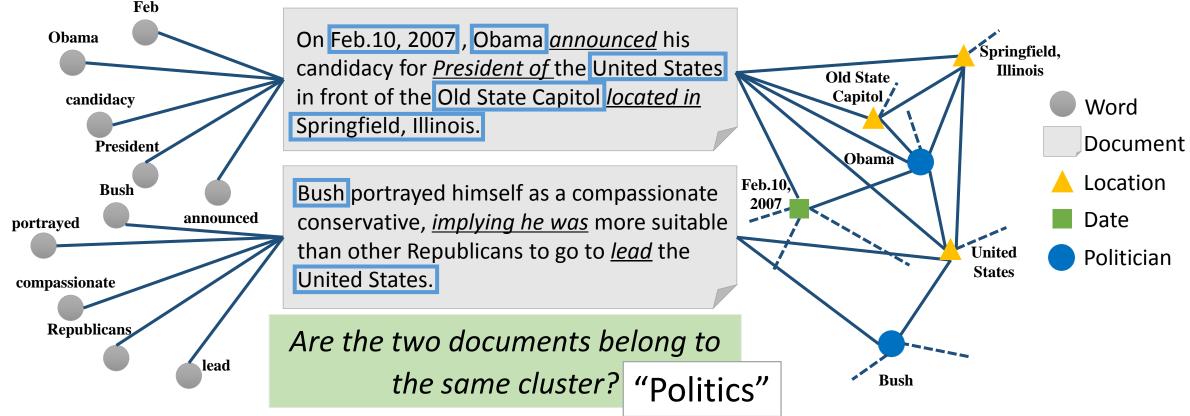


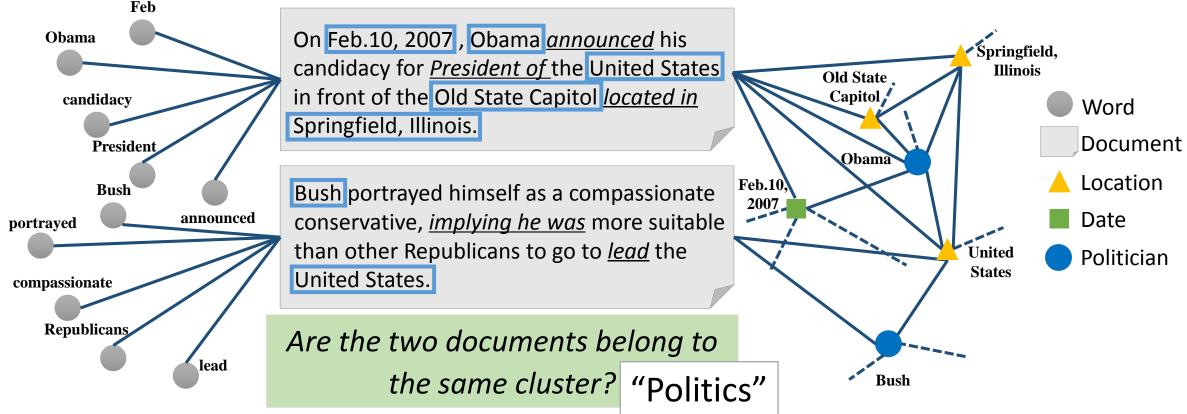
On Feb.10, 2007, Obama *announced* his candidacy for *President of* the United States in front of the Old State Capitol *located in* Springfield, Illinois.

Bush portrayed himself as a compassionate conservative, *implying he was* more suitable than other Republicans to go to *lead* the United States.

Are the two documents belong to the same cluster?

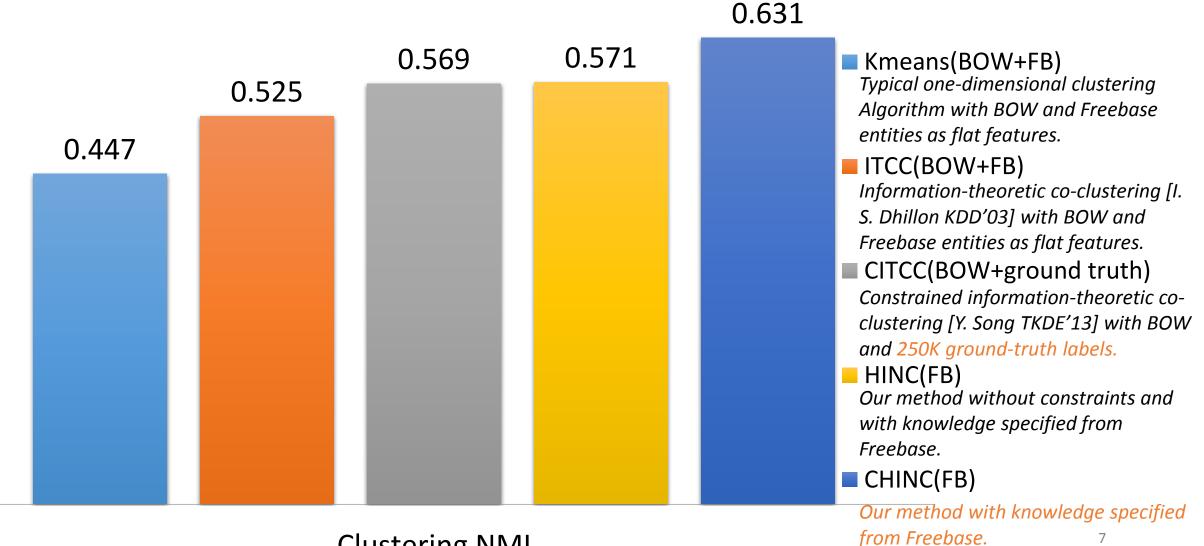






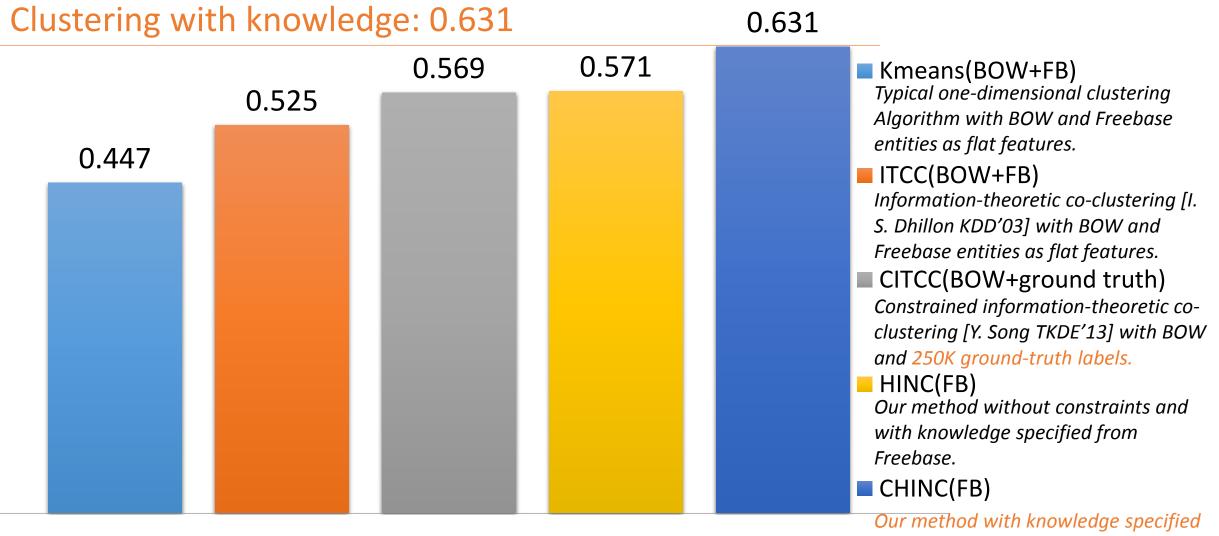
- Links and types carry a lot of information!
- But traditional approaches are not using them

Clustering of 20 Newsgroups Documents



Clustering NMI

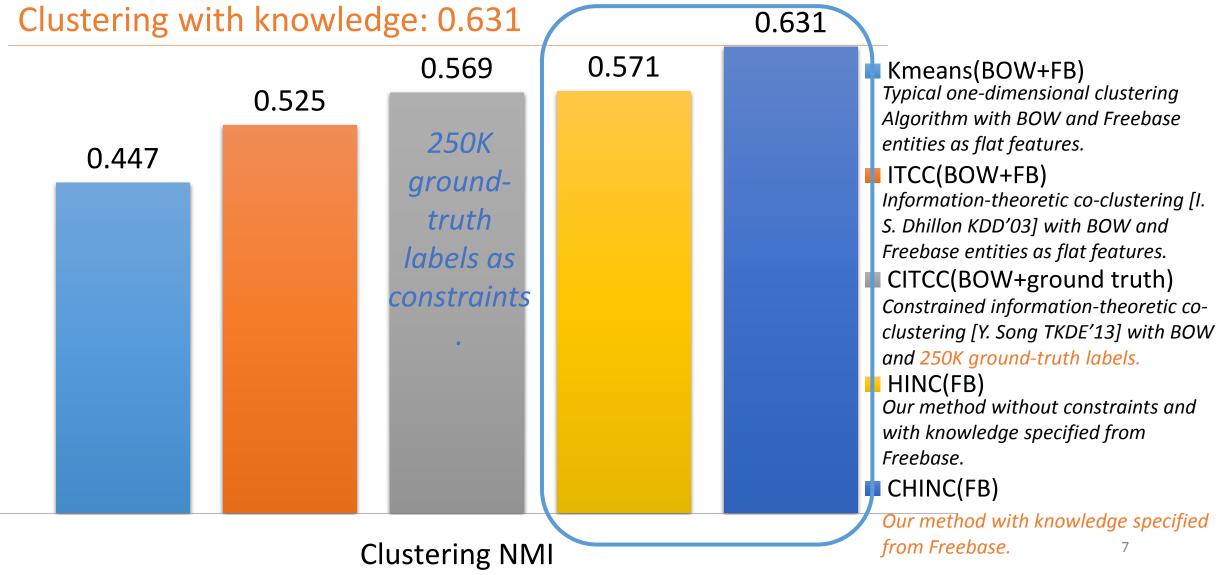
Clustering of 20 Newsgroups Documents



from Freebase.

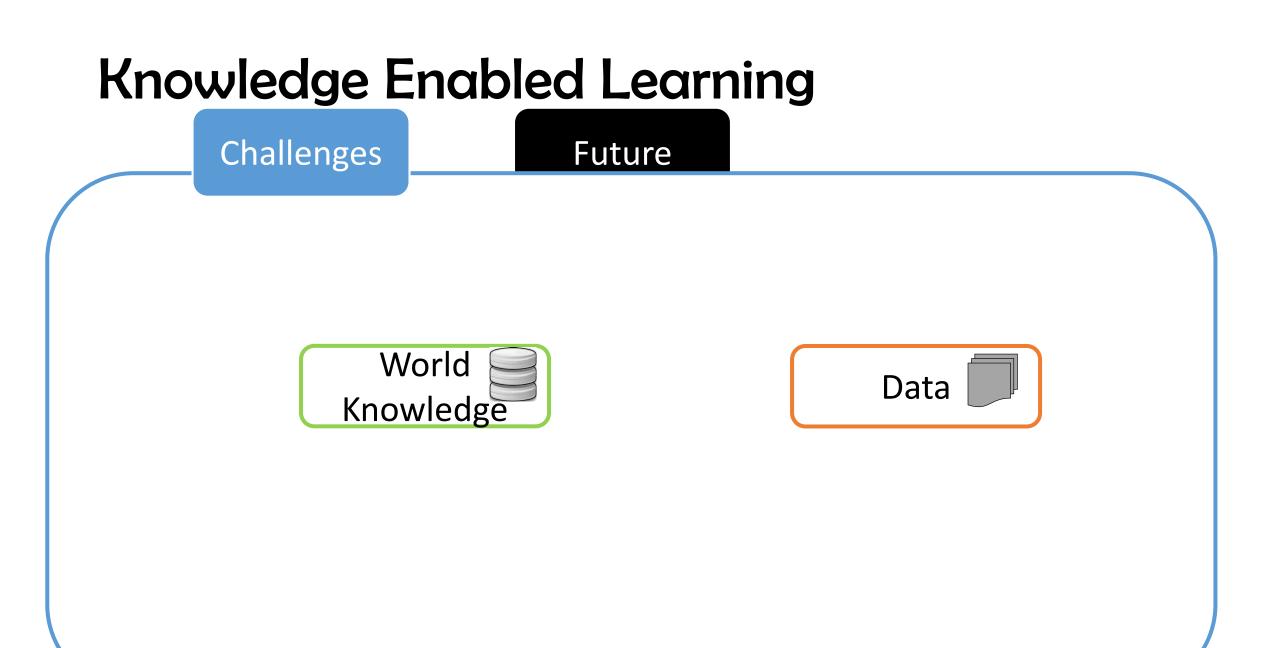
Clustering NMI

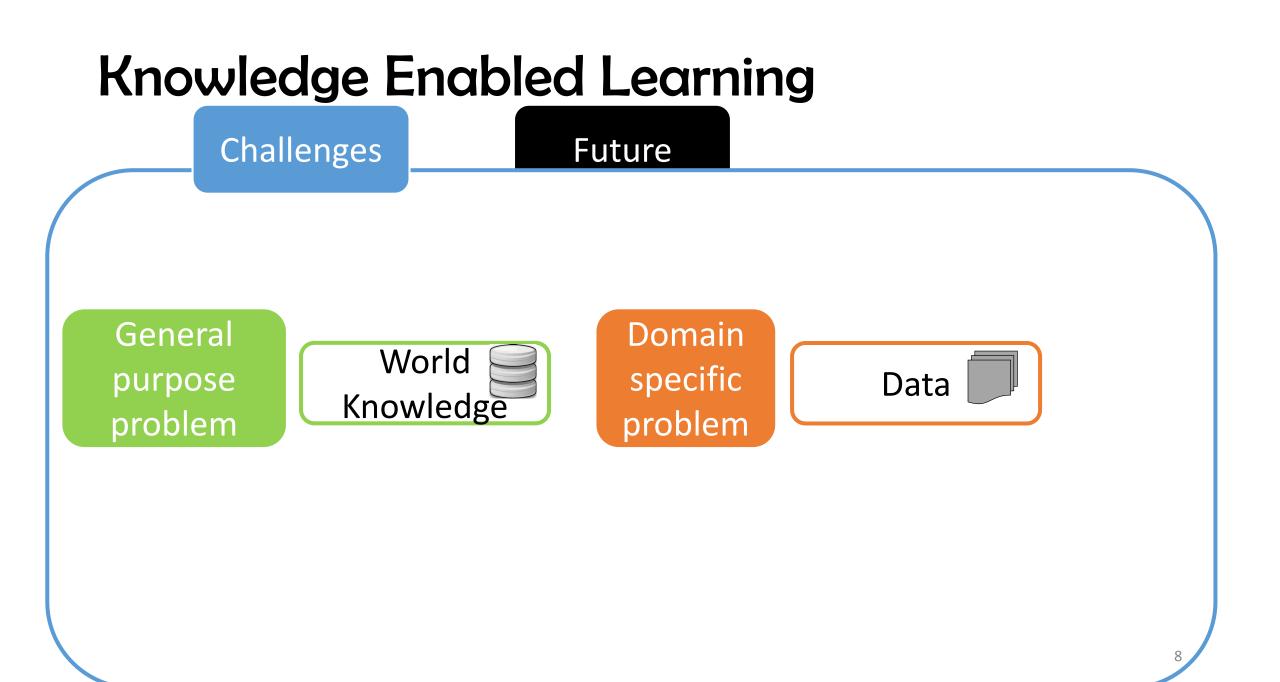
Clustering of 20 Newsgroups Documents

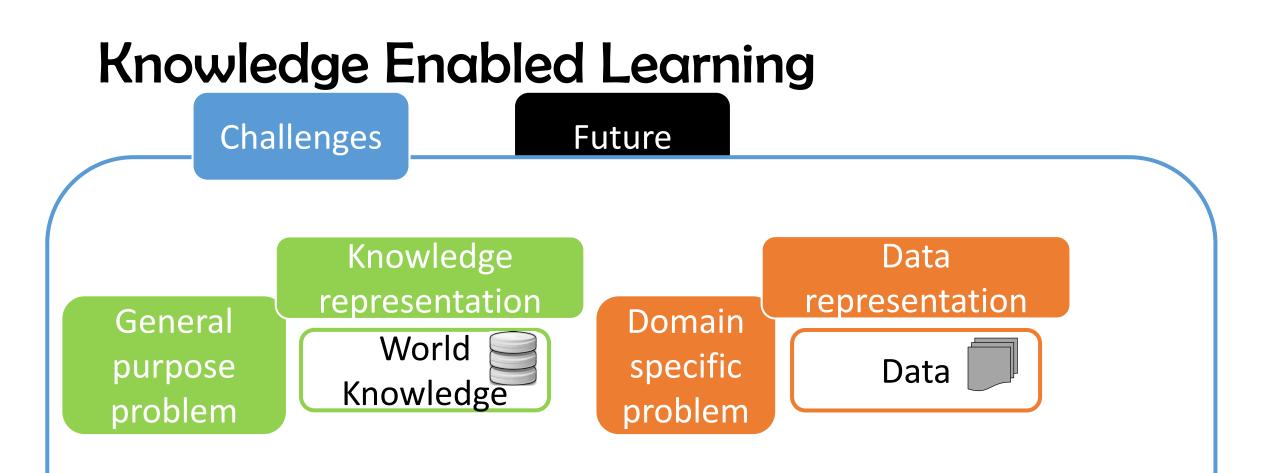


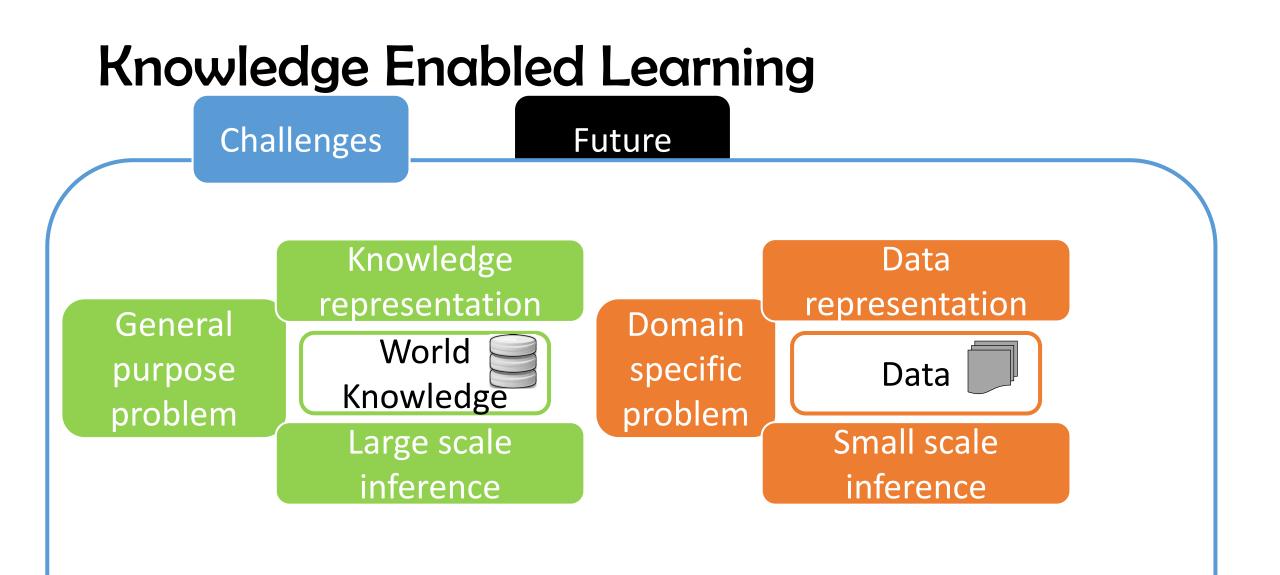
Challenges

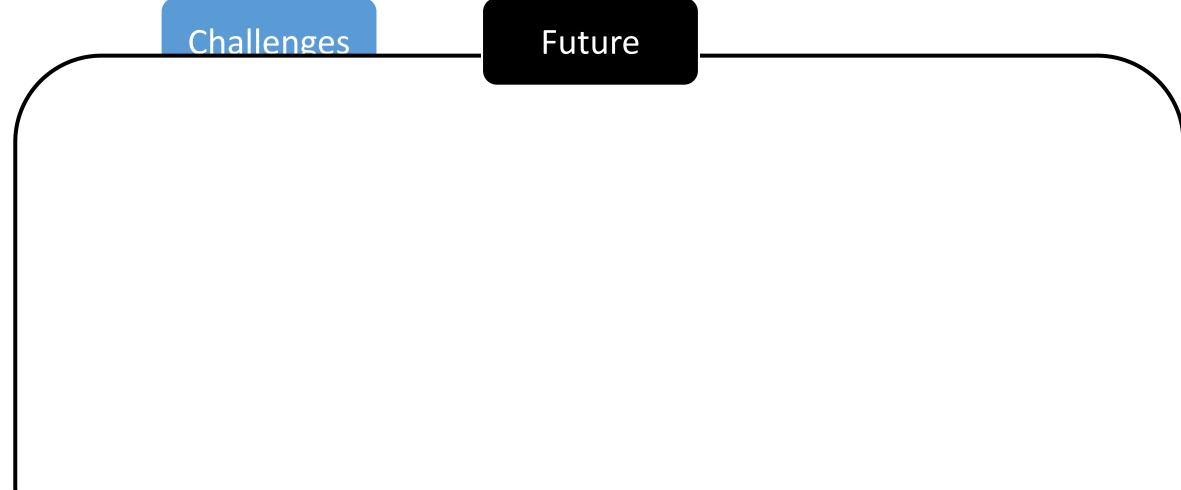
Future







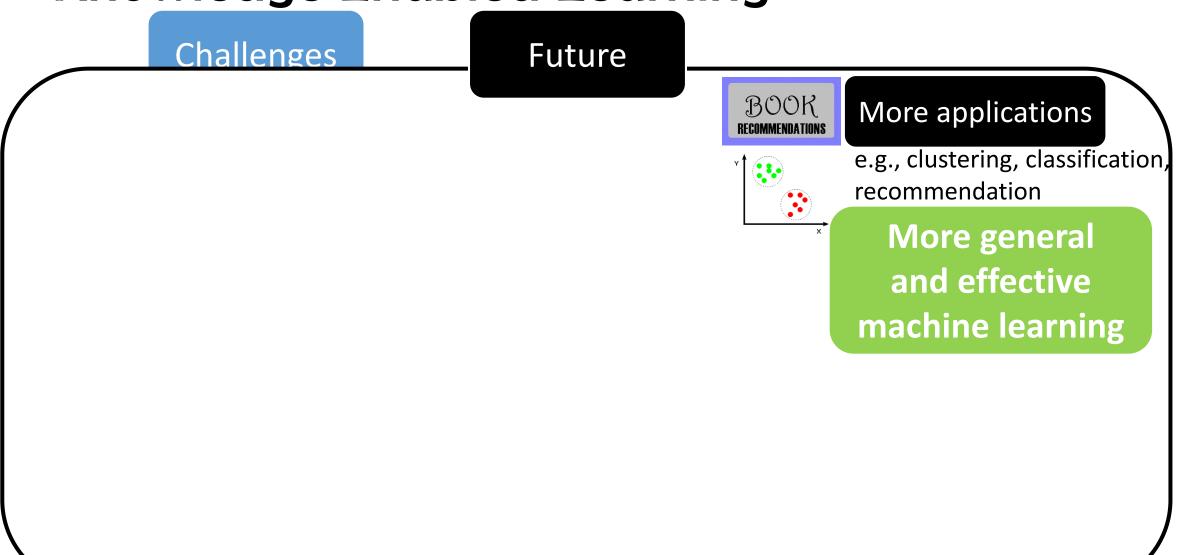


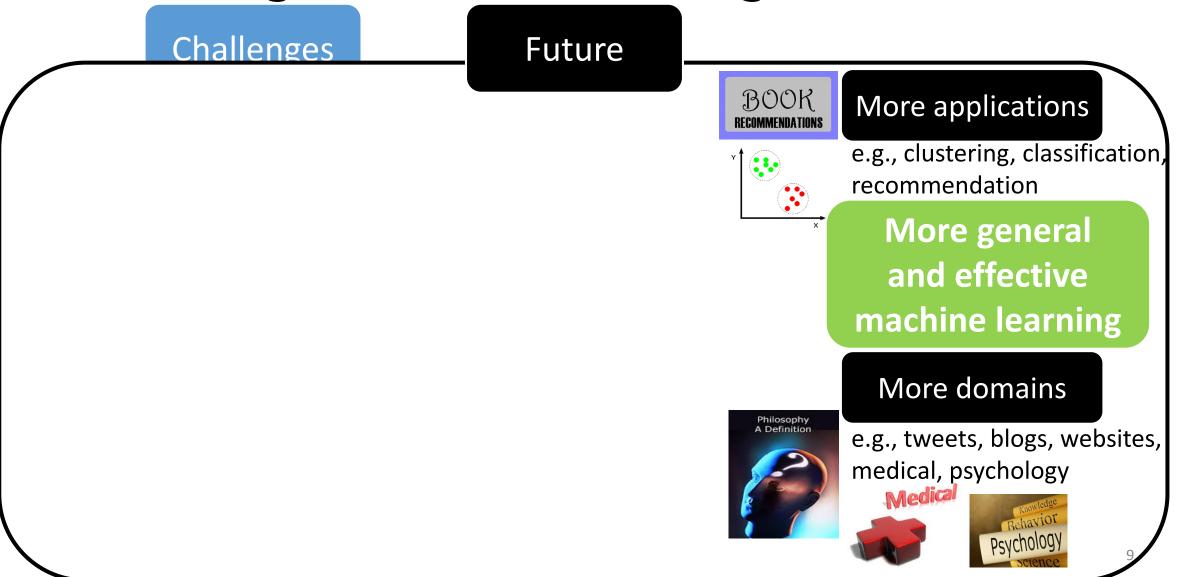


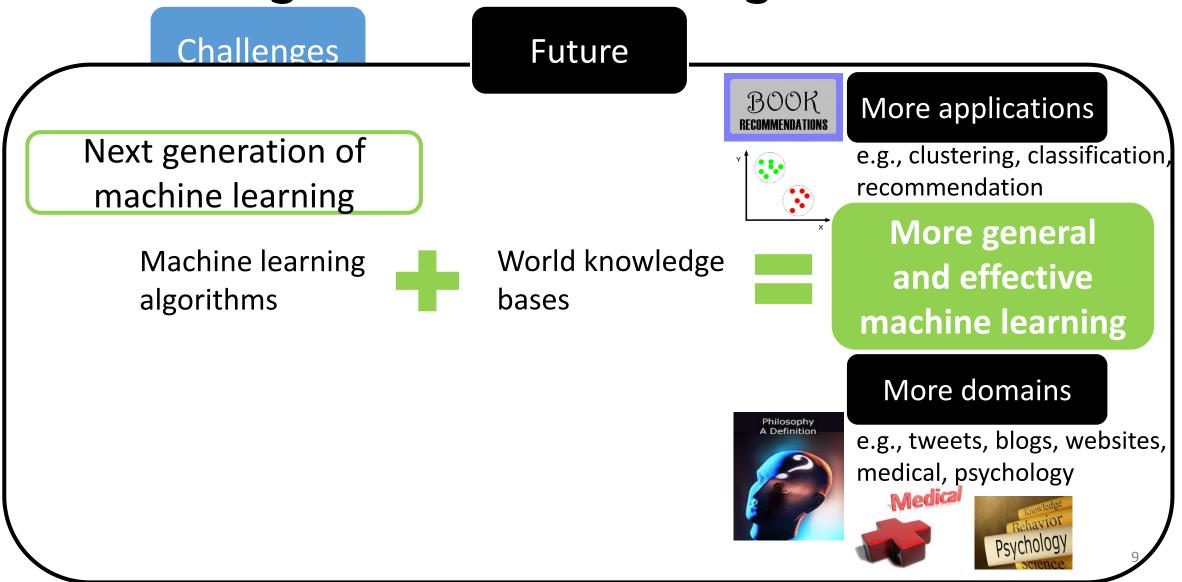
Challenges

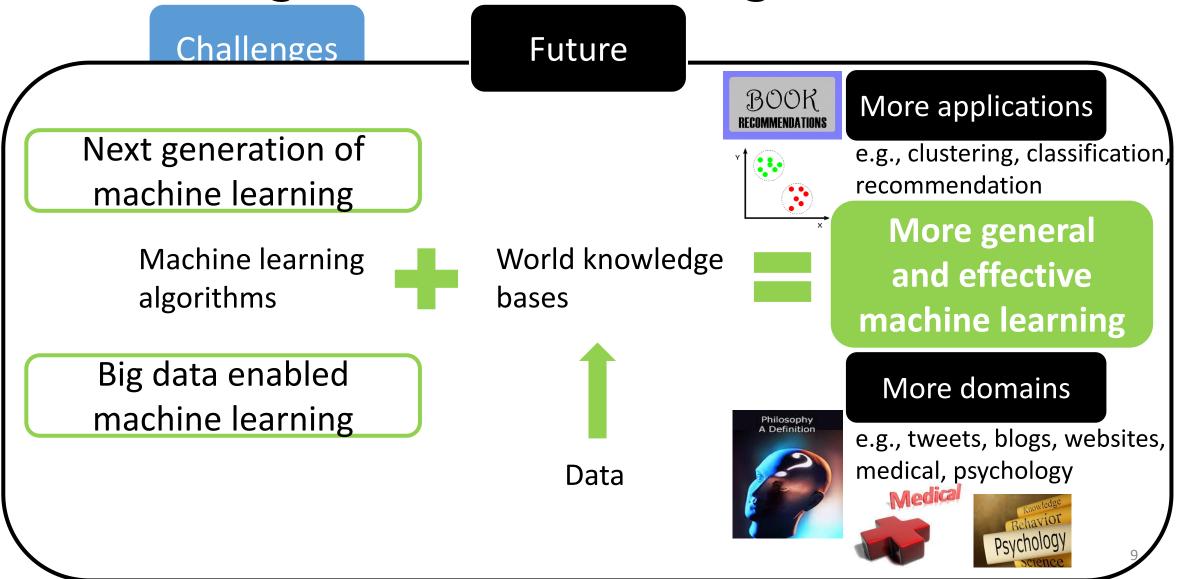
Future

More general and effective machine learning

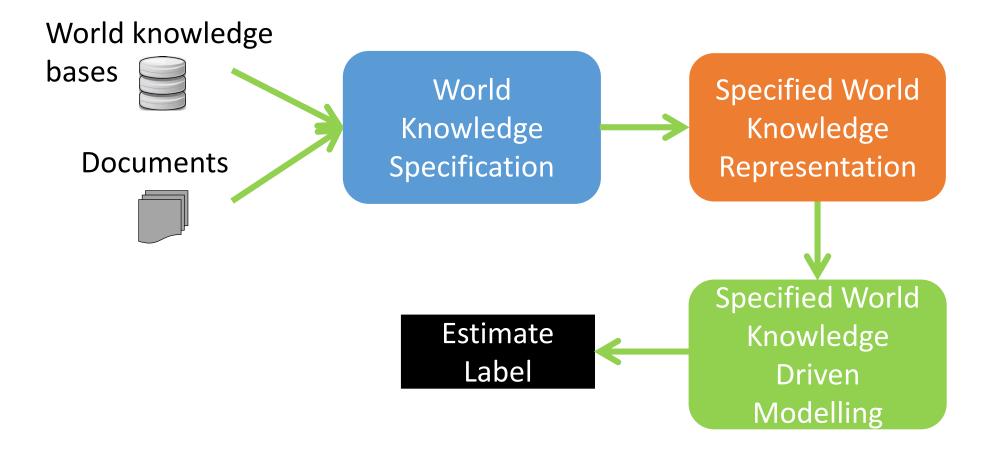




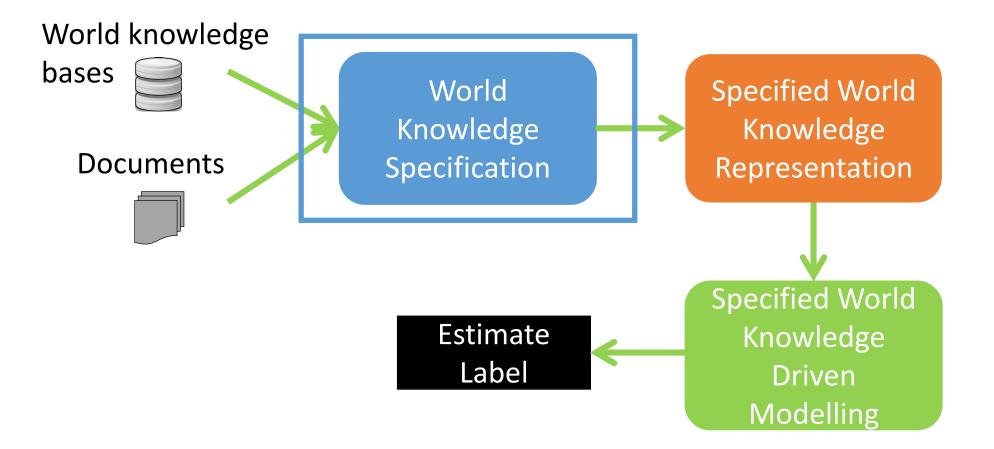




Text Clustering with World Knowledge



Text Clustering with World Knowledge



Document Obama is the president of the United States of America

Document Obama is the president of the United States of America

Semantic parsing is the task of mapping a piece of natural language text to a formal meaning representation.

Document Obama is the president of the United States of America

Semantic parsing is the task of mapping a piece of natural language text to a formal meaning representation.

Logic form *People.BarackObama* **¬** PresidentofCountry.Country.USA

Document Obama is the president of the United States of America

Semantic parsing is the task of mapping a piece of natural language text to a formal meaning representation.

Logic form *People.BarackObama* **¬** PresidentofCountry.Country.USA

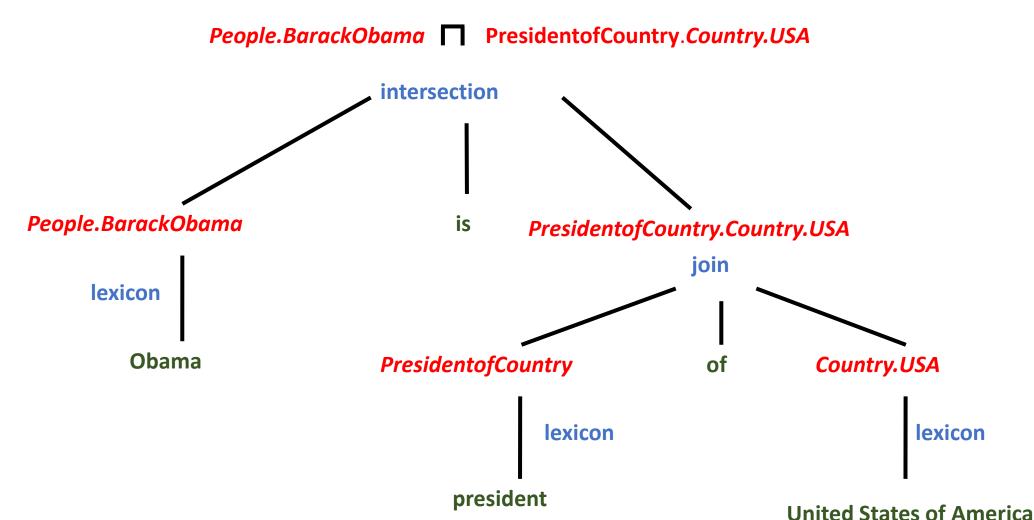
- Motivation: [J. Berant et al. EMNLP'13] aim to train a parser from question/answer pairs on a large knowledge-base Freebase
 - Existing semantic parsing approaches, that require expert annotation
 - Scales to large scale knowledge-bases, supervised by the QA pairs

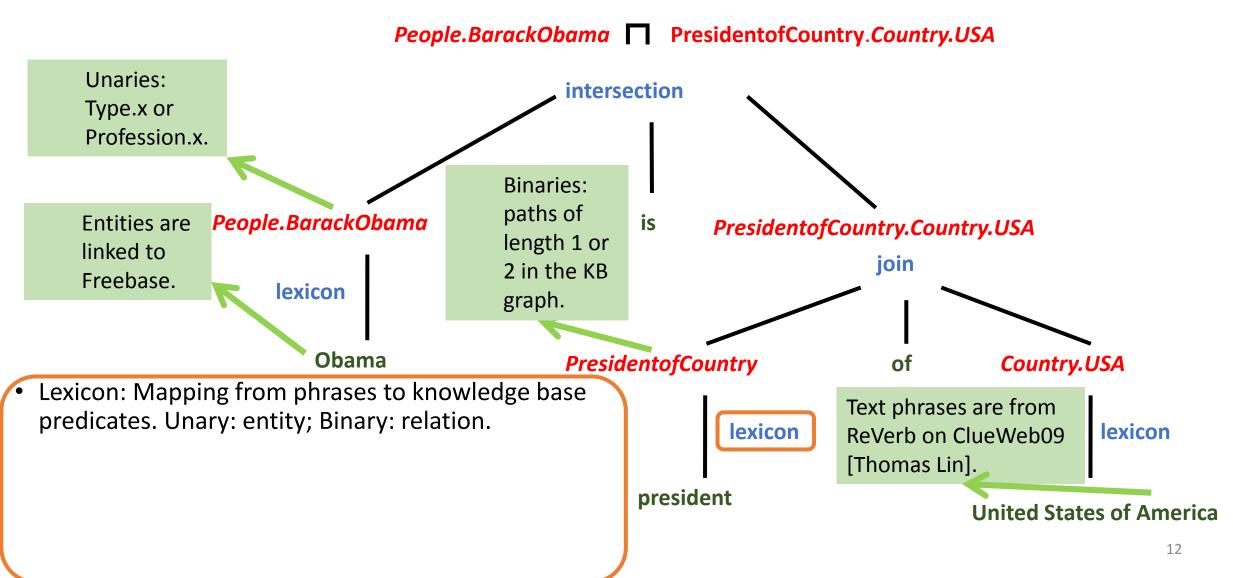
Document Obama is the president of the United States of America

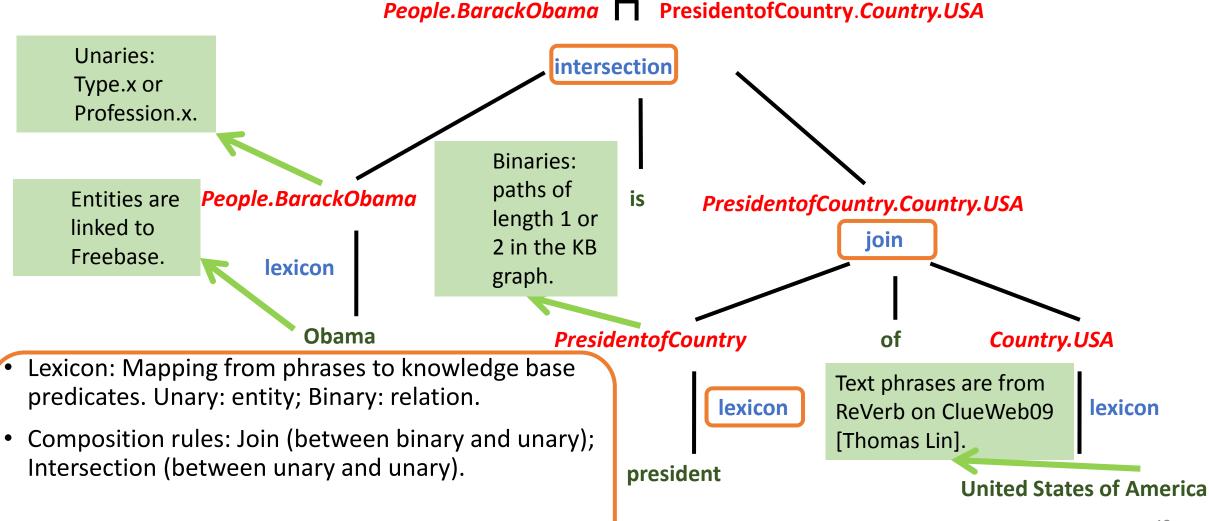
Semantic parsing is the task of mapping a piece of natural language text to a formal meaning representation.

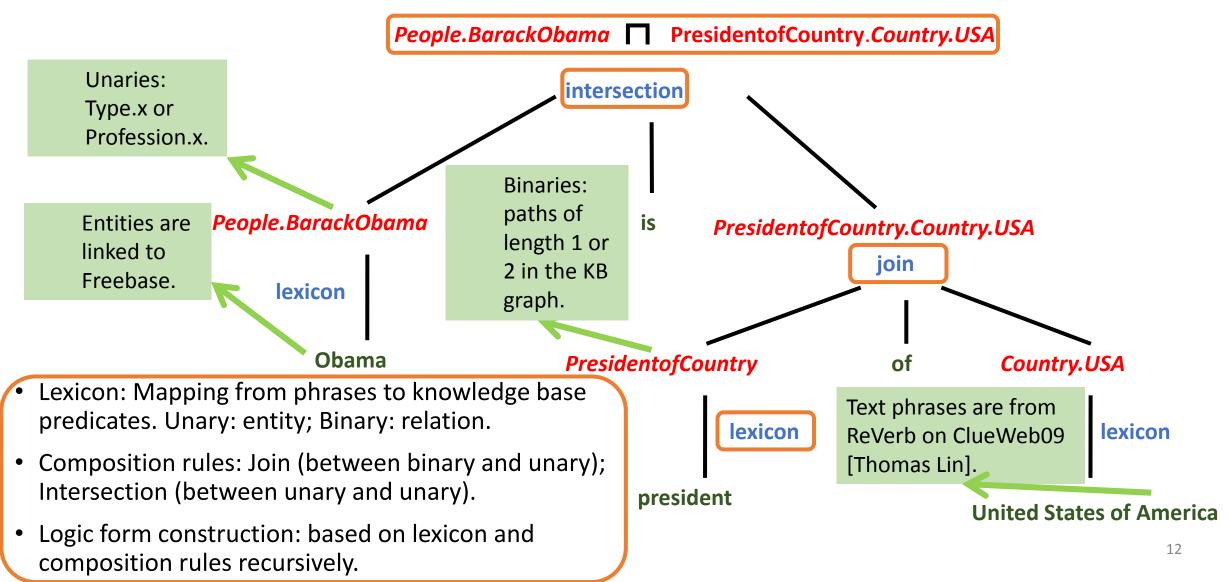
Logic form *People.BarackObama* **¬** PresidentofCountry.Country.USA

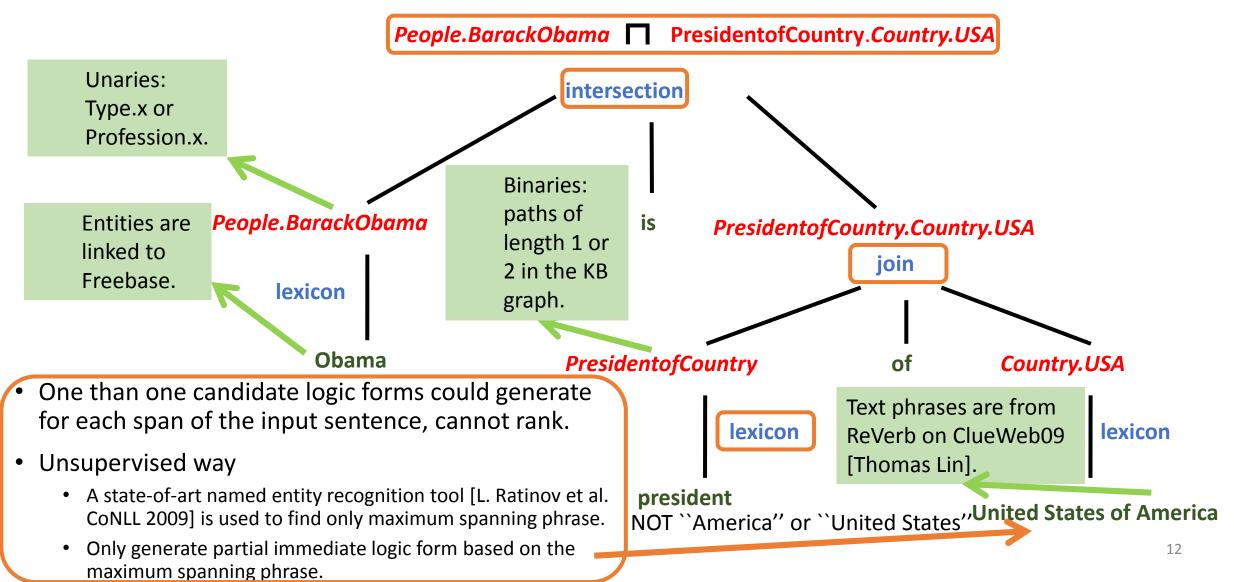
- Motivation: [J. Berant et al. EMNLP'13] aim to train a parser from question/answer pairs on a large knowledge-base Freebase
 - Existing semantic parsing approaches, that require expert annotation
 - Scales to large scale knowledge-bases, supervised by the QA pairs
- No such training data for the document dataset.



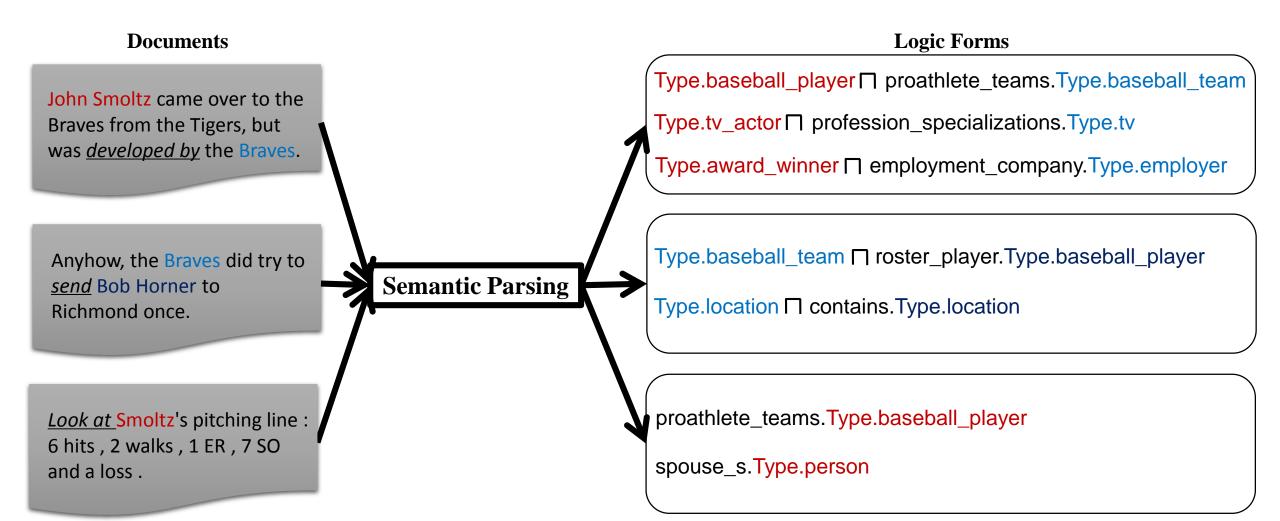








Examples of Semantic Parsing on 20NG



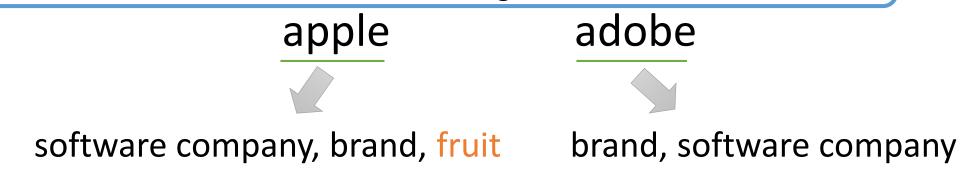
• Conceptualization based semantic filter (CBSF).

• Conceptualization based semantic filter (CBSF).

• Conceptualization based semantic filter (CBSF).

apple	adobe

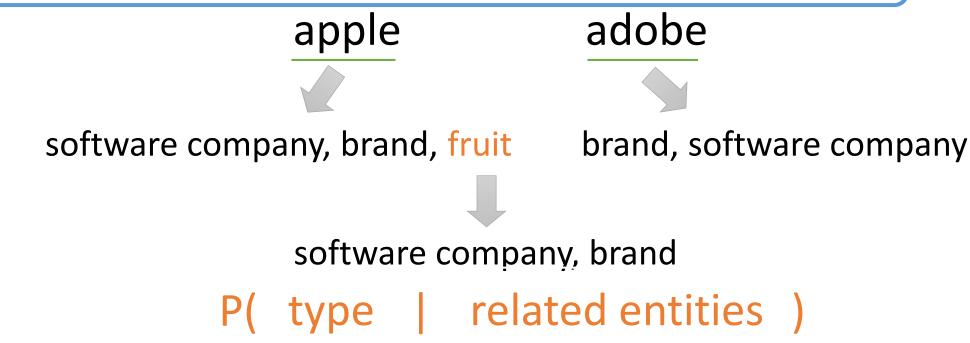
• Conceptualization based semantic filter (CBSF).



• Conceptualization based semantic filter (CBSF).

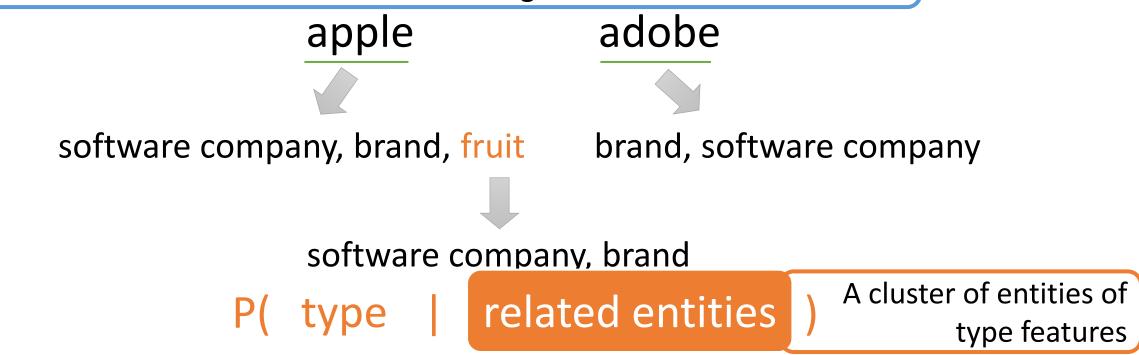


• Conceptualization based semantic filter (CBSF).



• Conceptualization based semantic filter (CBSF).

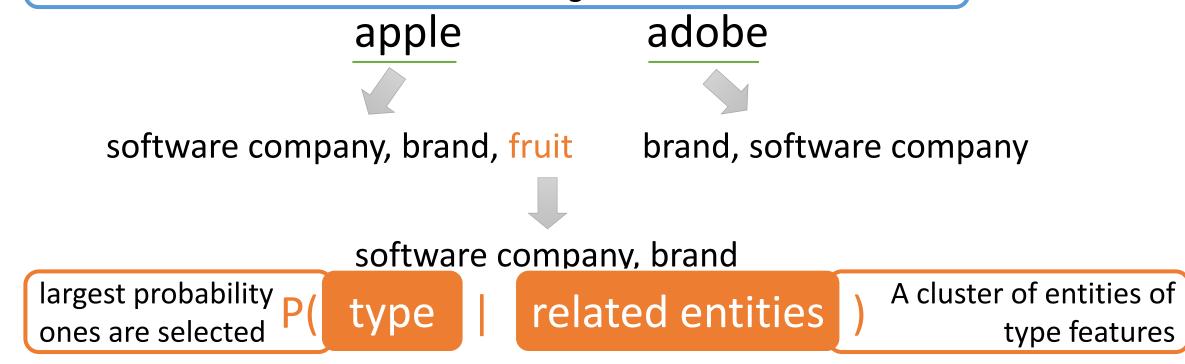
Assumption: correct semantic meaning can best fit the context. Different entities can be used to disambiguate each other.



Song et al. Short text conceptualization using a probabilistic knowledgebase. IJCAI'11.

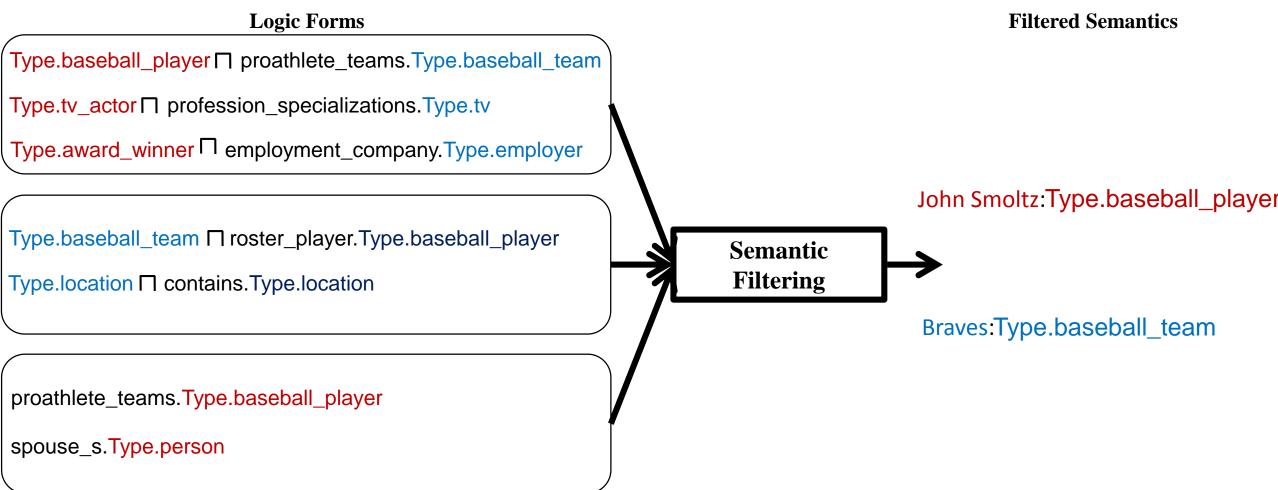
• Conceptualization based semantic filter (CBSF).

Assumption: correct semantic meaning can best fit the context. Different entities can be used to disambiguate each other.

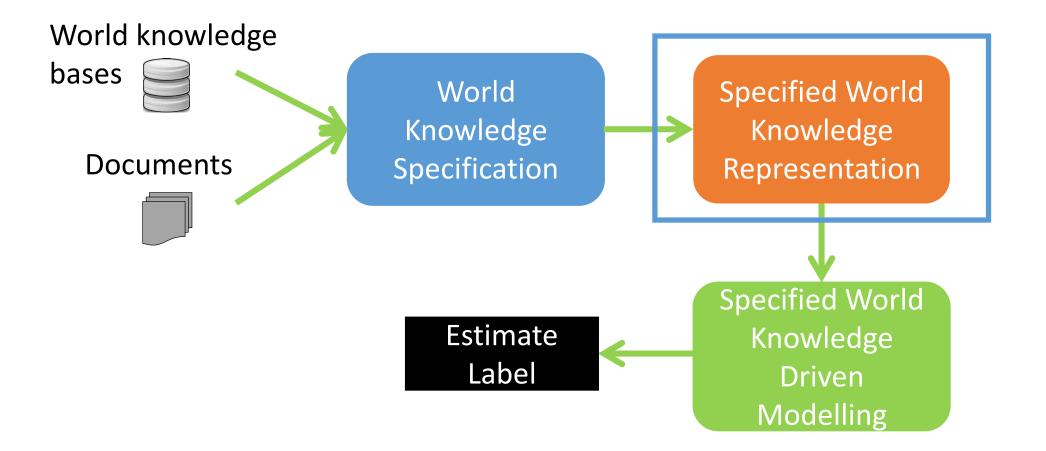


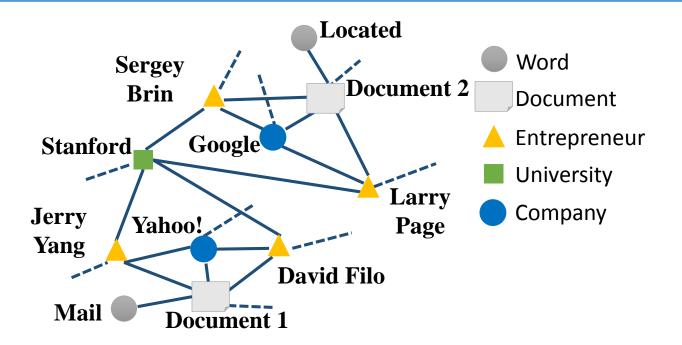
Song et al. Short text conceptualization using a probabilistic knowledgebase. IJCAI'11.

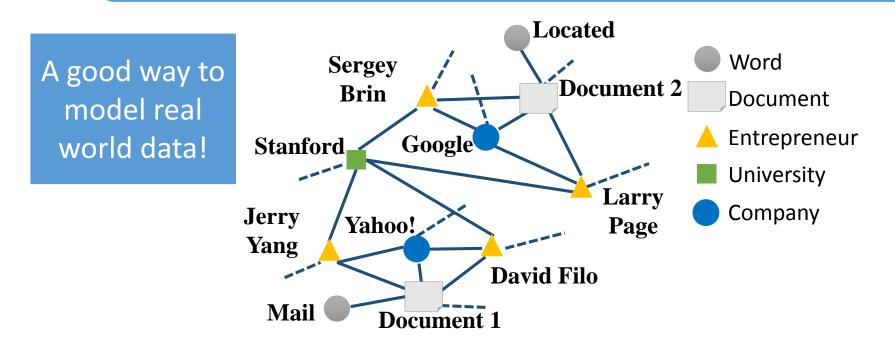
Examples of Semantic Filtering on 20NG

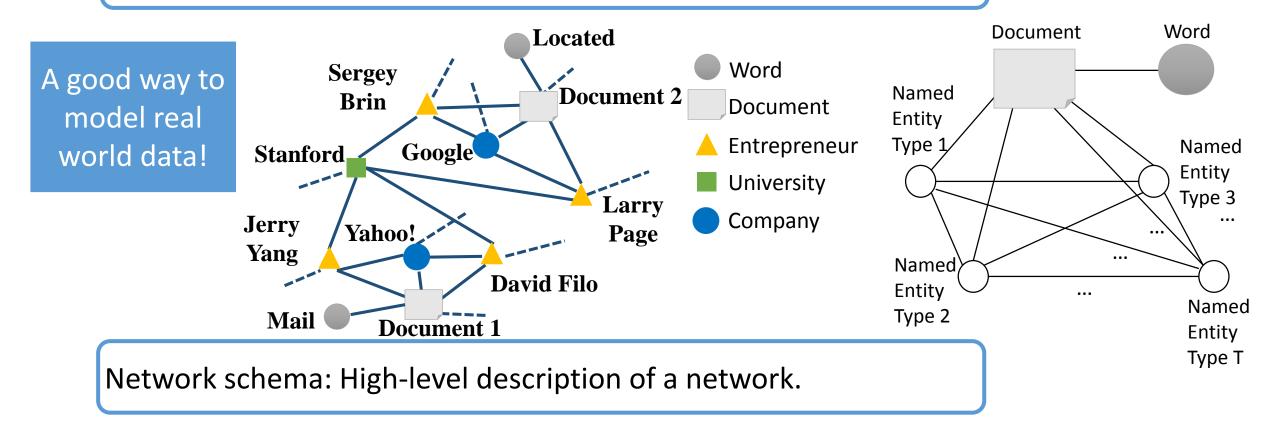


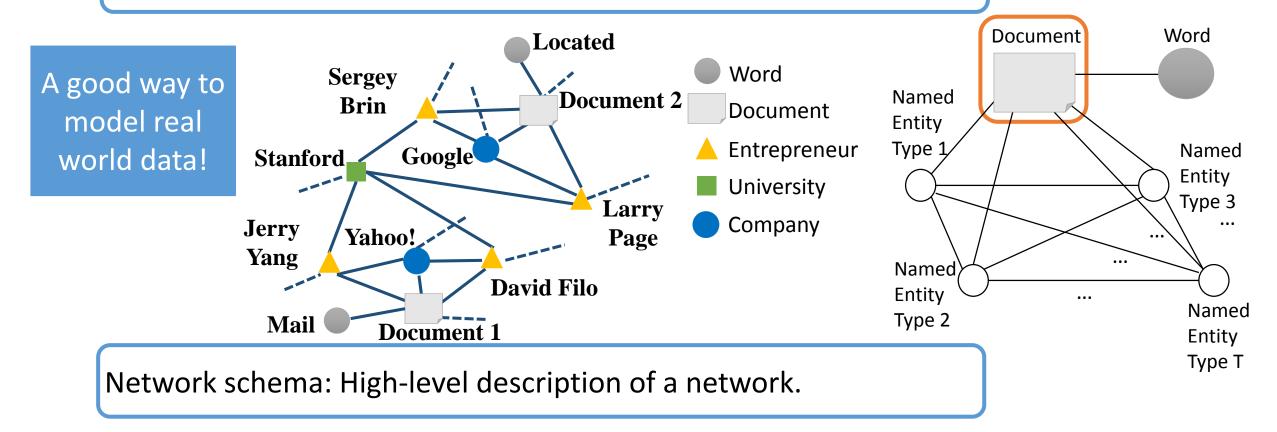
Text Clustering with World Knowledge

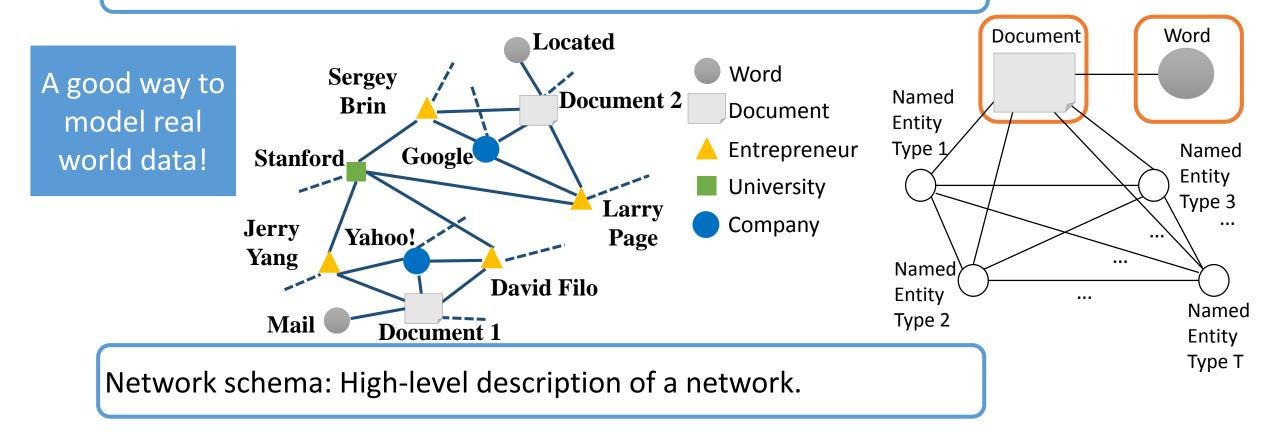


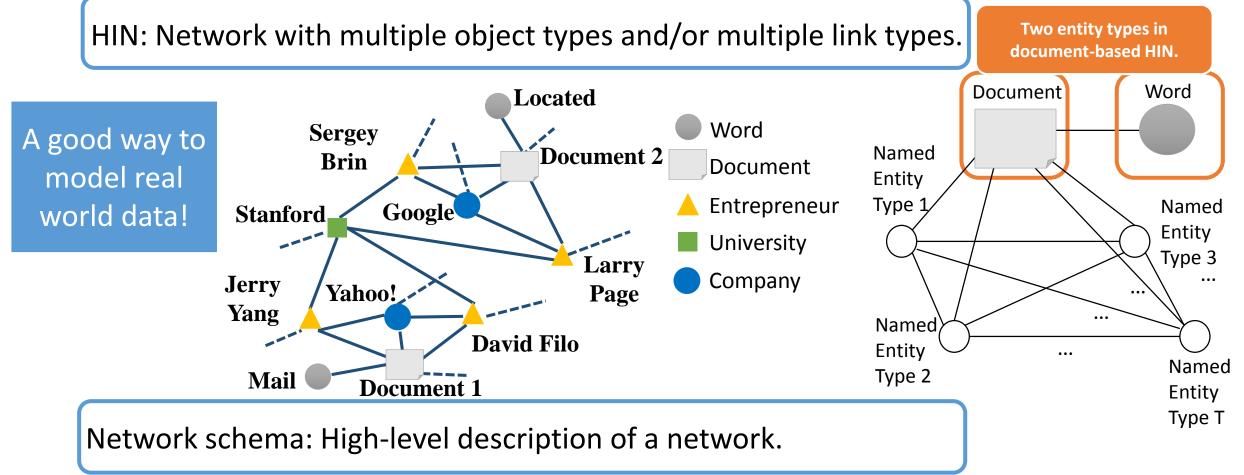






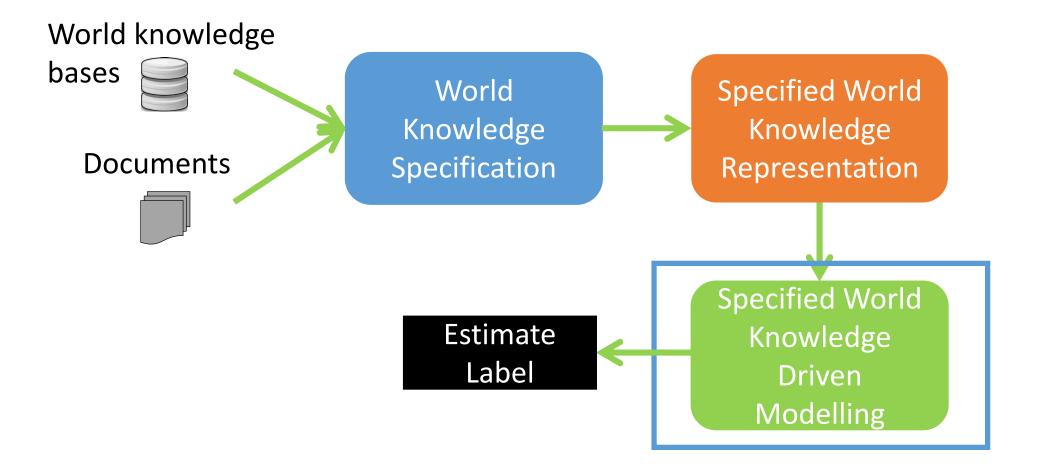


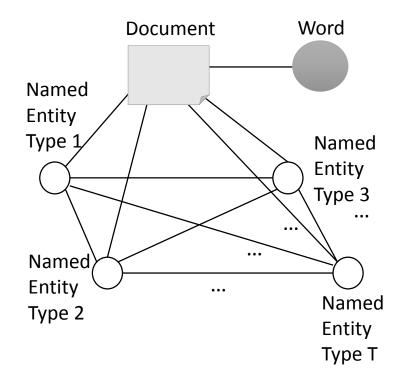


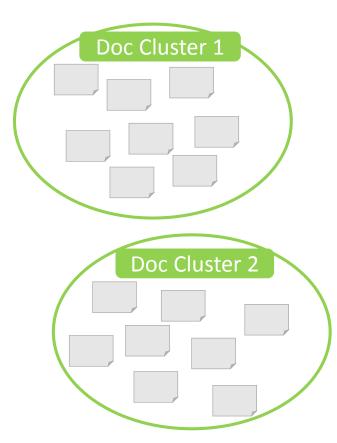


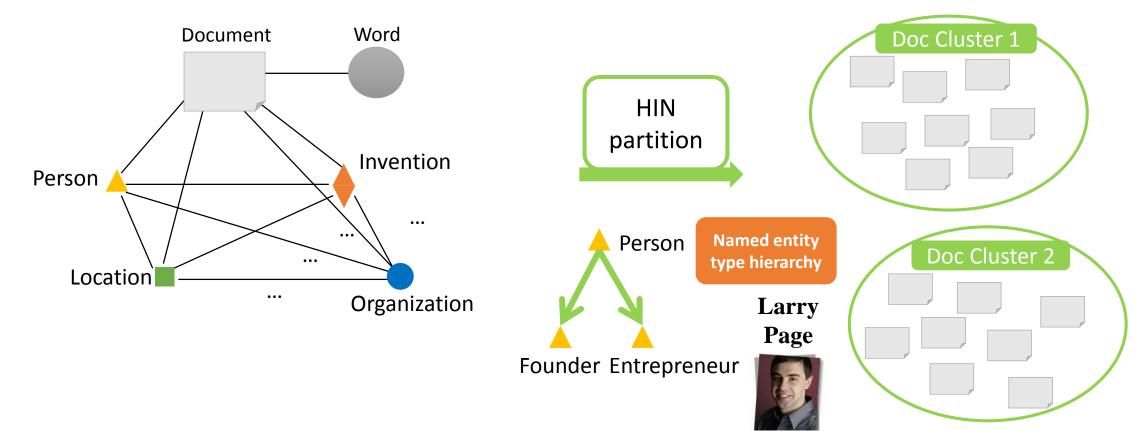


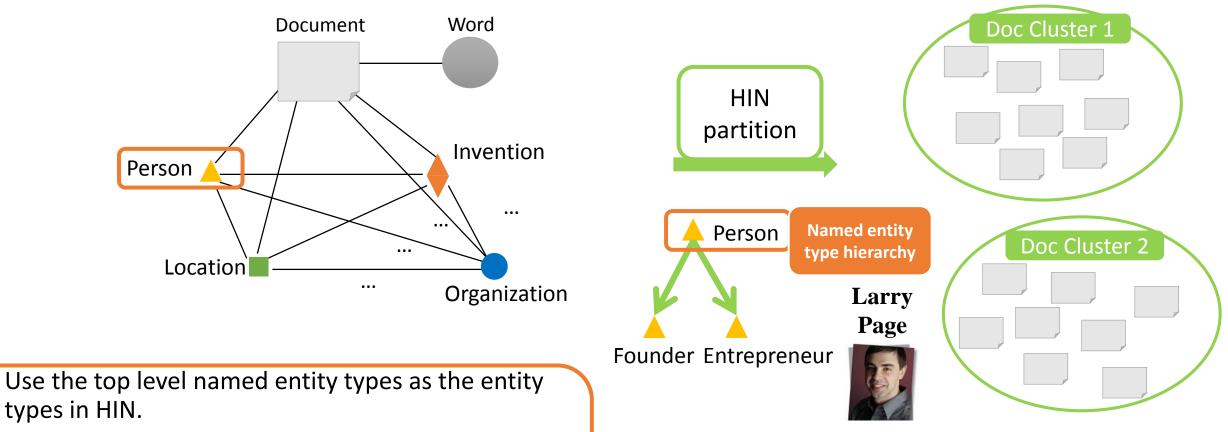
Text Clustering with World Knowledge



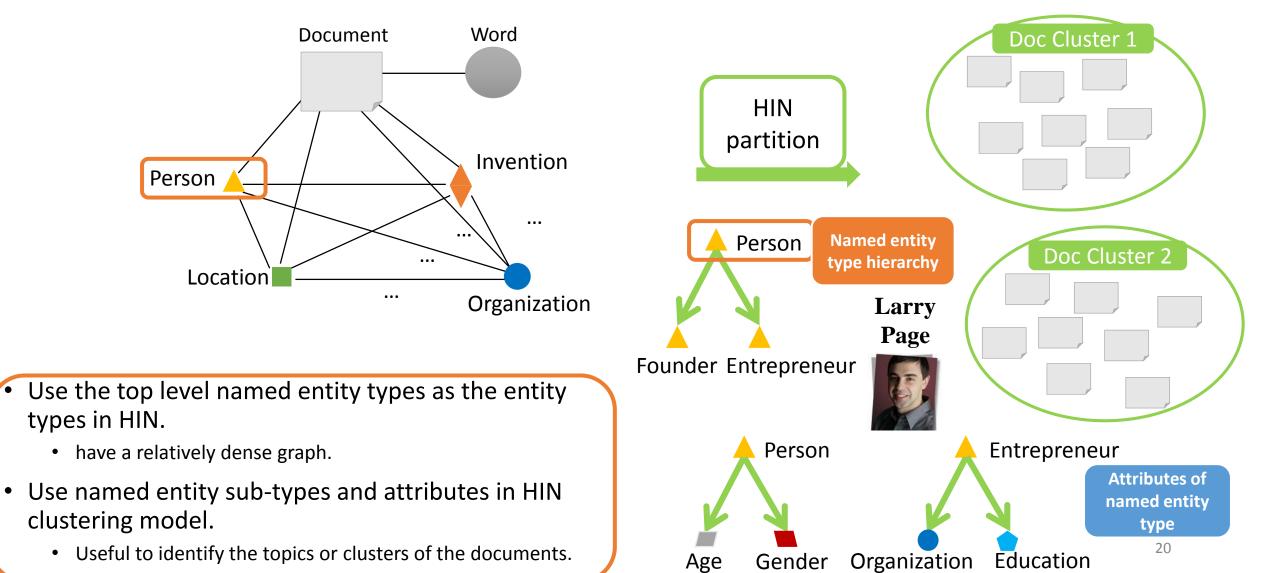


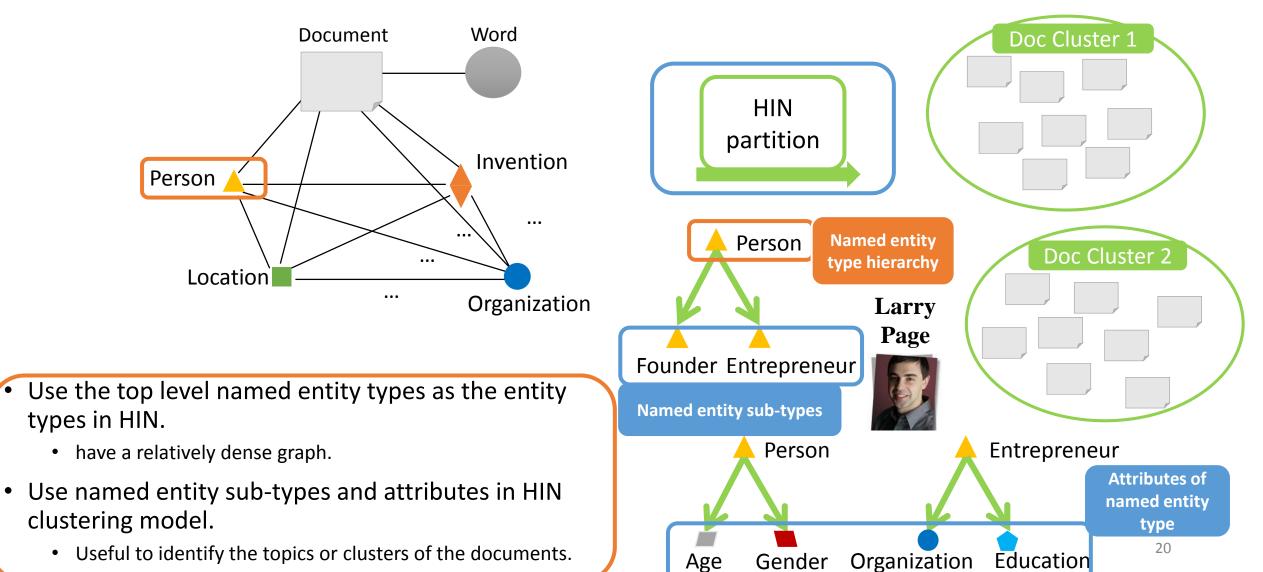


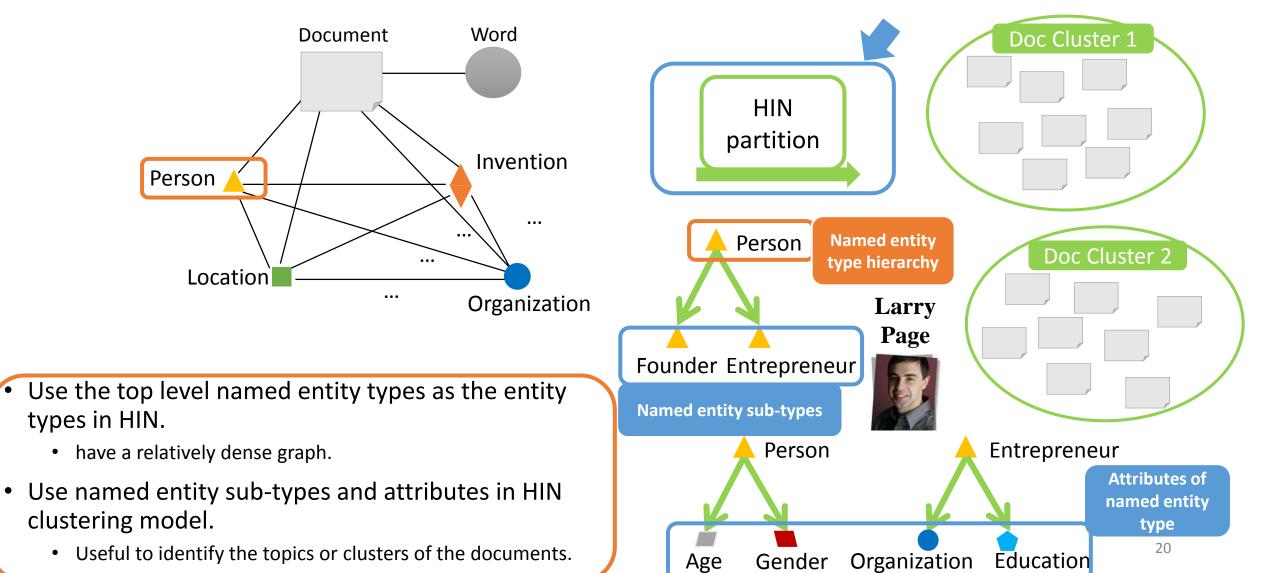




• have a relatively dense graph.







Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].

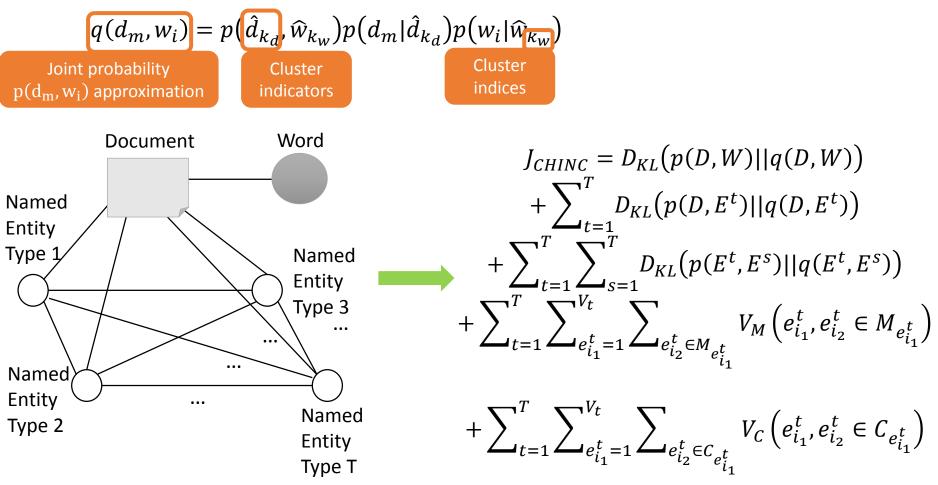
 $q(d_m, w_i) = p(\hat{d}_{k_d}, \widehat{w}_{k_w}) p(d_m | \hat{d}_{k_d}) p(w_i | \widehat{w}_{k_w})$

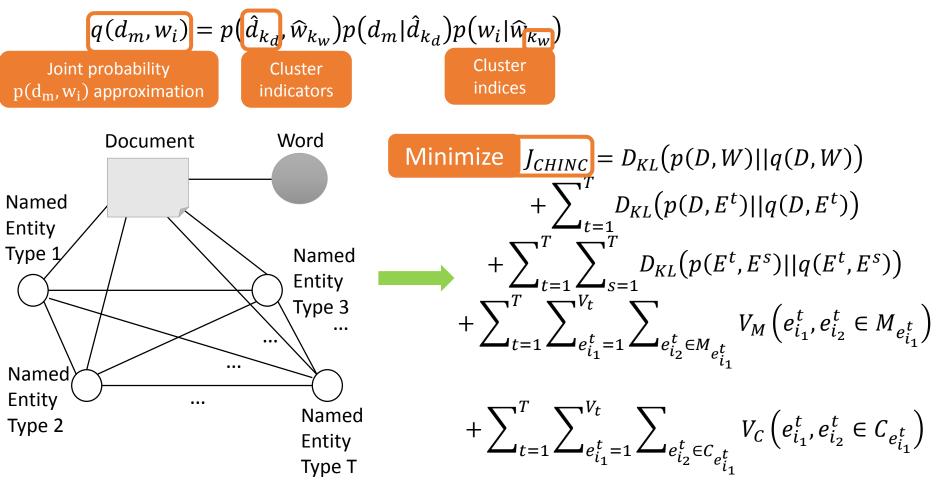
Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].

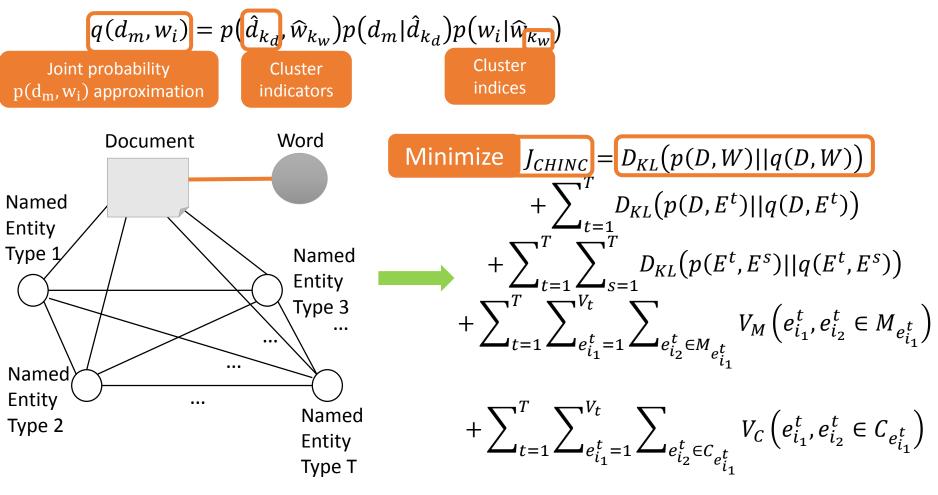
$$\begin{array}{c} q(d_m, w_i) = p(\hat{d}_{k_d}, \widehat{w}_{k_w}) p(d_m | \hat{d}_{k_d}) p(w_i | \widehat{w}_{k_w}) \\ \text{nt probability} \\ \mathbf{w}_i) \text{ approximation} \end{array} \begin{array}{c} \text{Cluster} \\ \text{indicators} \\ \end{array} \begin{array}{c} \text{Cluster} \\ \text{indices} \end{array}$$

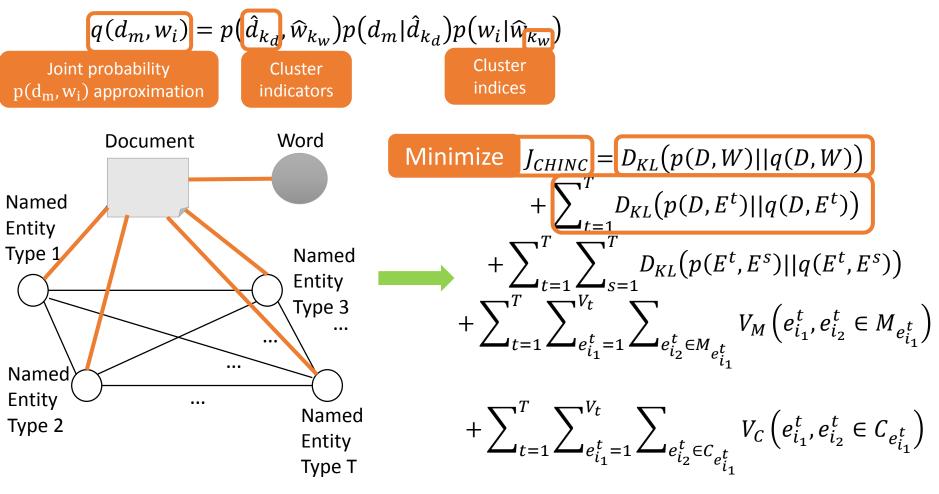
Joir

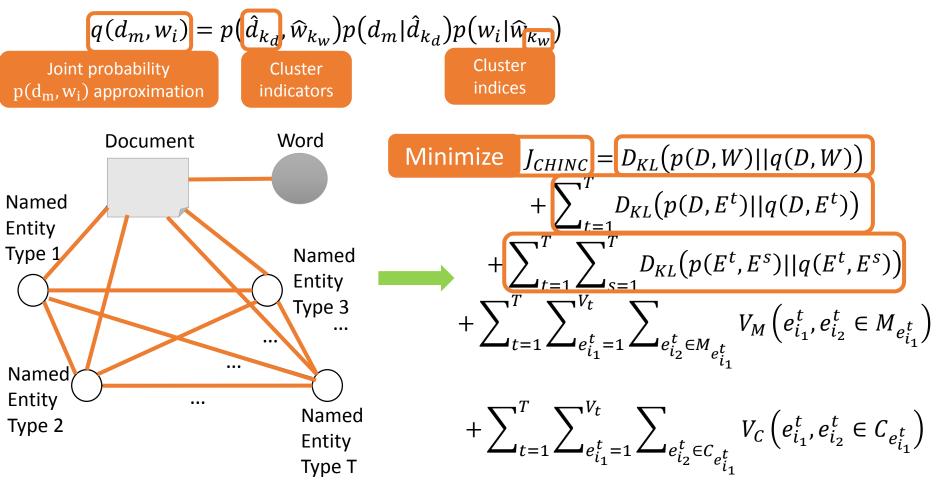
 $p(d_m, v)$

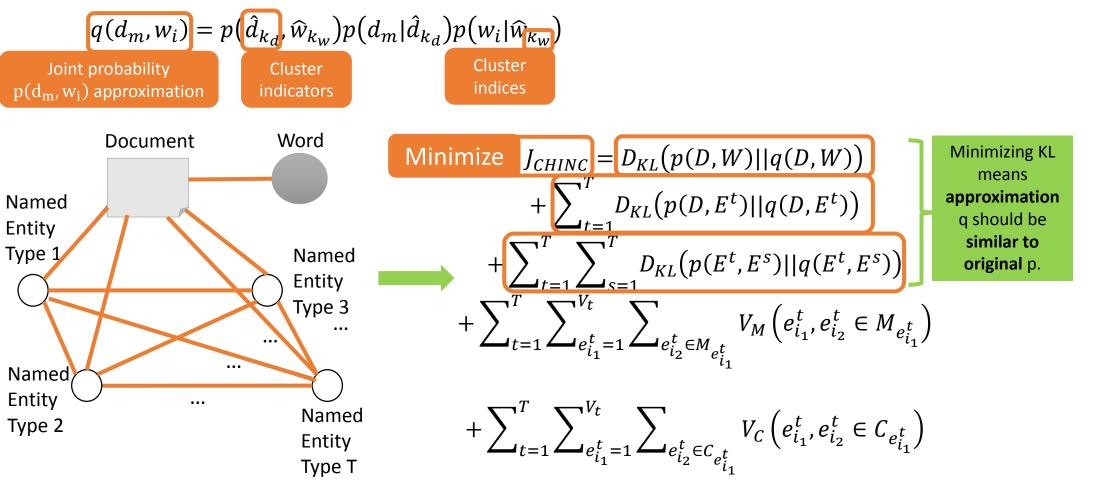


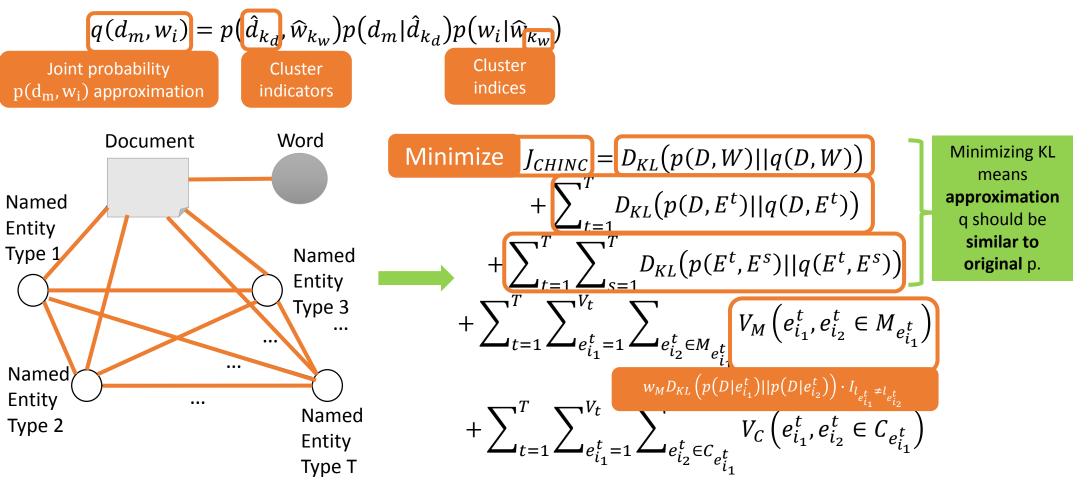


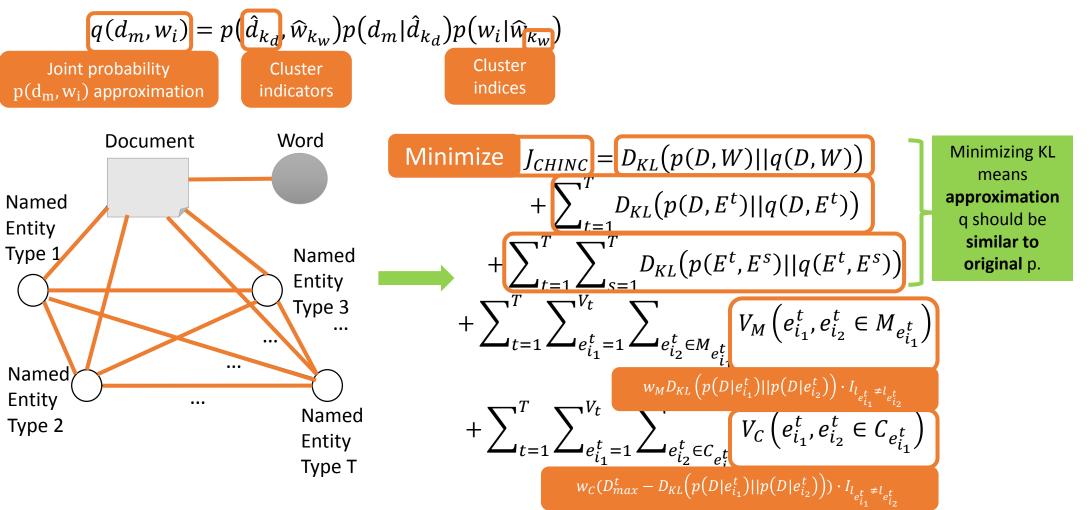




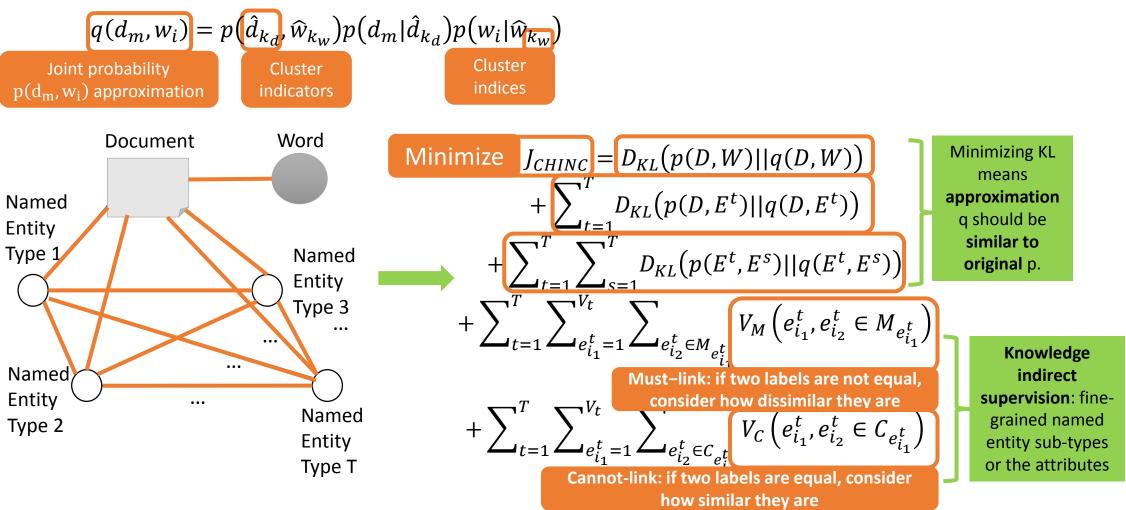




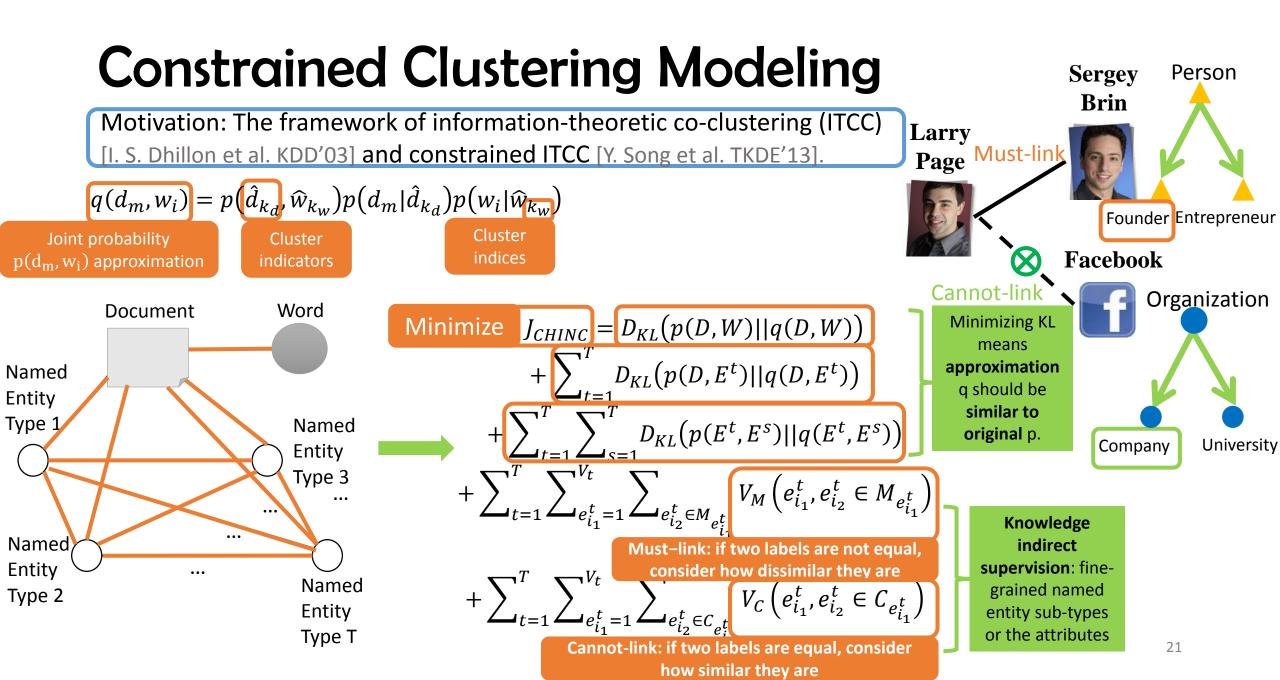




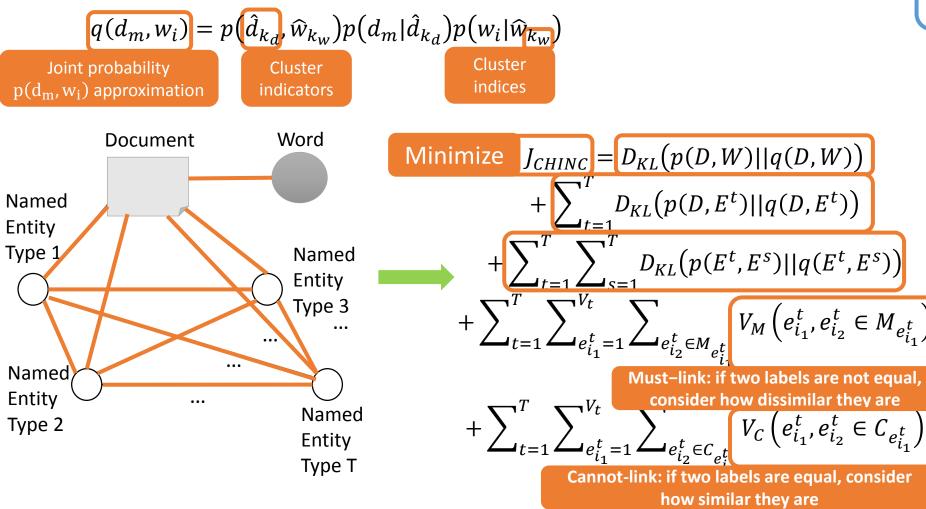
Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



21



Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



Globally optimizing the latent labels and the approximating function is intractable

Algorithm: Alternating Optimization

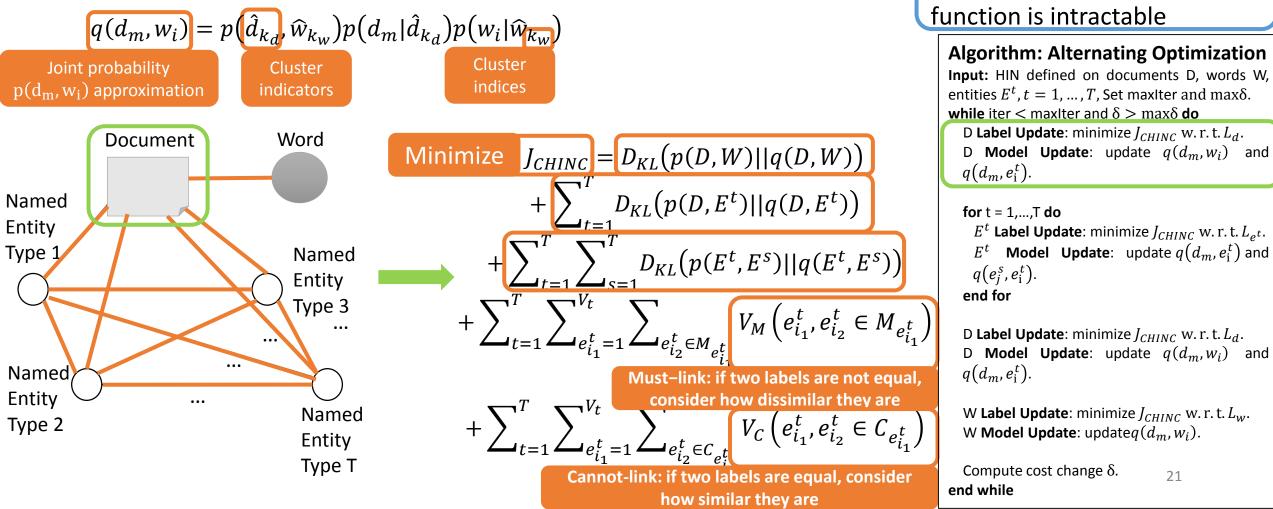
Input: HIN defined on documents D, words W, entities E^t , t = 1, ..., T, Set maxIter and max δ . **while** iter < maxIter and $\delta > \max \delta$ **do** D Label Update: minimize J_{CHINC} w.r.t. L_d . D Model Update: update $q(d_m, w_i)$ and $q(d_m, e_i^t)$.

for t = 1,...,T do E^{t} Label Update: minimize J_{CHINC} w. r. t. $L_{e^{t}}$. E^{t} Model Update: update $q(d_{m}, e_{i}^{t})$ and $q(e_{j}^{s}, e_{i}^{t})$. end for

D Label Update: minimize J_{CHINC} w.r.t. L_d . D Model Update: update $q(d_m, w_i)$ and $q(d_m, e_i^t)$.

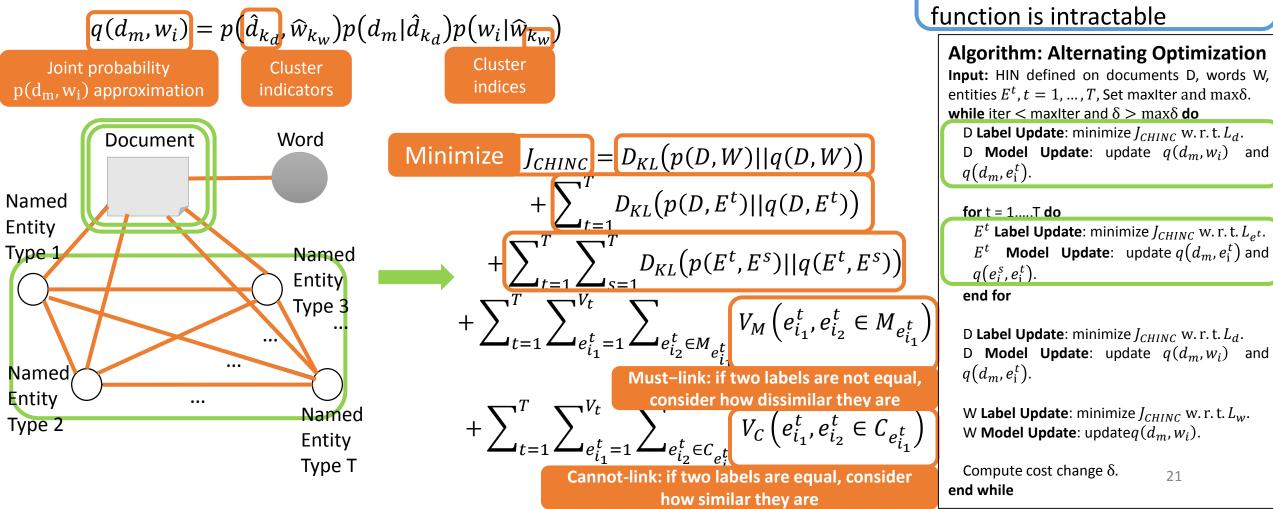
W Label Update: minimize J_{CHINC} w. r. t. L_w . W Model Update: update $q(d_m, w_i)$.

Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



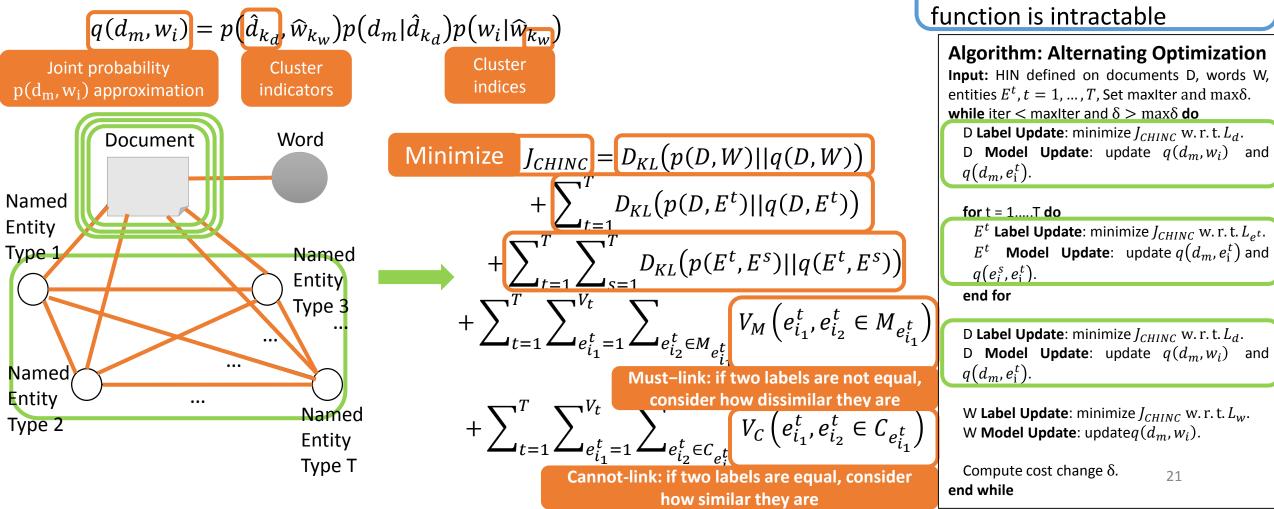
Globally optimizing the latent

Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



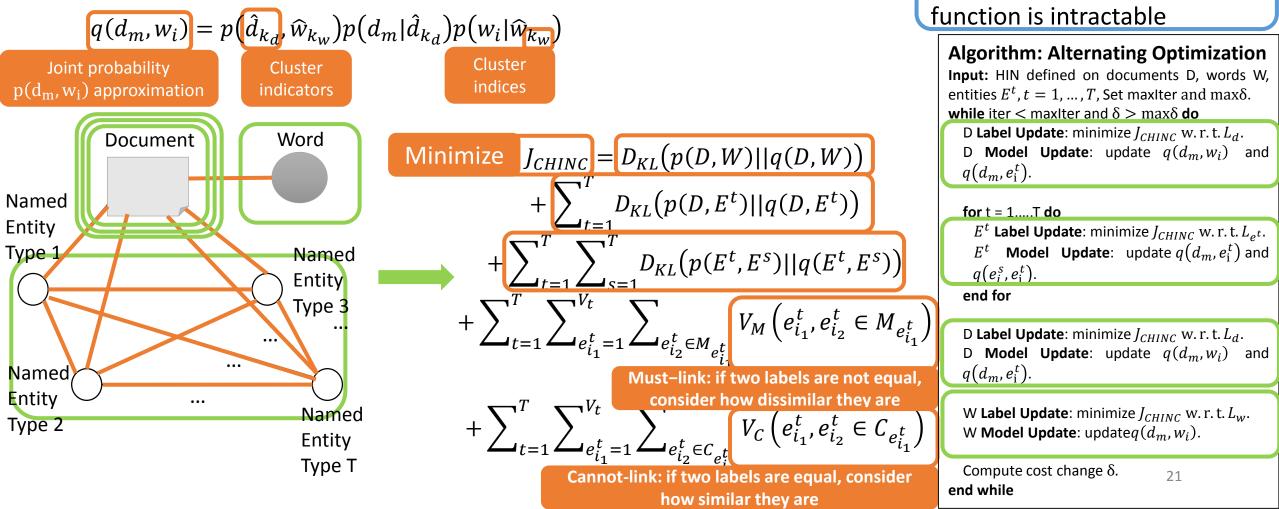
Globally optimizing the latent

Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



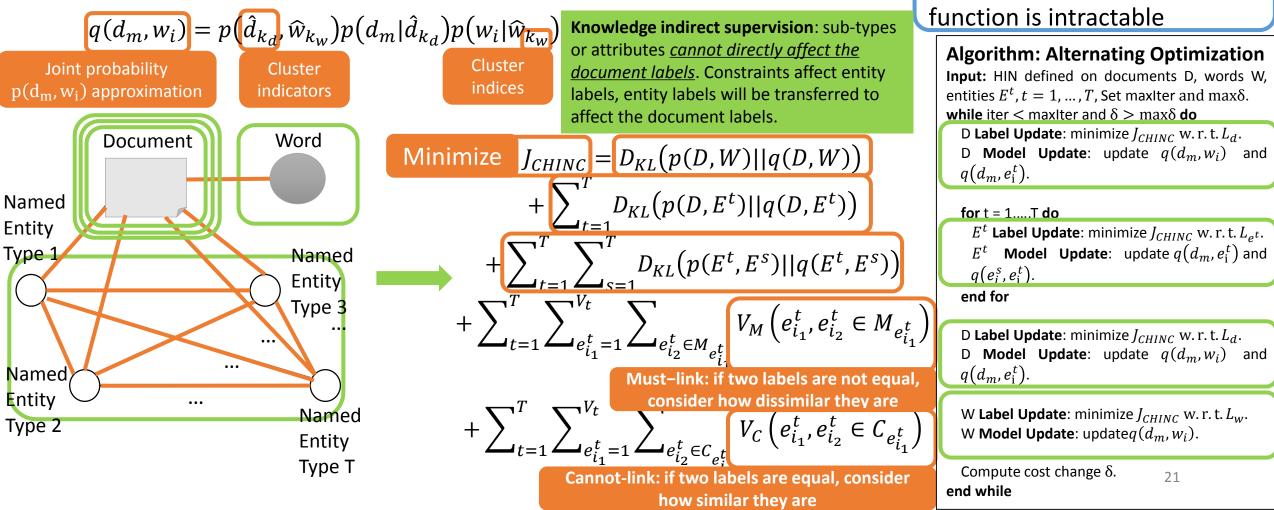
Globally optimizing the latent

Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



Globally optimizing the latent

Motivation: The framework of information-theoretic co-clustering (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



Globally optimizing the latent

Document datasets			
Name	#(Categories)	#(Leaf Categories)	#(Documents)
20Newsgroups (20NG)	6	20	20,000
MCAT (Markets)	9	7	44,033
CCAT (Corporate/Industrial)	31	26	47,494
ECAT (Economics)	23	18	19,813

World knowledge bases				
Name	#(Entity Types)	#(Entity Instances)	#(Relation Types)	#(Relation Instances)
Freebase	1,500	40 millions	35,000	2 billions
publicly available knowledge base with entities and relations collaboratively collected by its community members.				
YAGO2	350,000	10 millions	100	120 millions
a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.				

Document datasets				
Name		#(Categories)	#(Leaf Categories)	#(Documents)
20Newsgro	oups (20NG)	6	20	20,000
MCAT (Mar	rkets)	9	7	44,033
CCAT (Corp	orate/Industrial)	31	26	47,494
ECAT (Economics) 23 18 19,813				
MCAT, CCAT, ECAT are top categories in RCV1 dataset containing manually labeled newswire stories from Reuter Ltd.				
World knowledge bases				
Name	#(Entity Types)	#(Entity Instances	;) #(Relation Types)	#(Relation Instances)
Freebase	1,500	40 millions	35,000	2 billions
publicly available knowledge base with entities and relations collaboratively collected by its community members.				
YAGO2	350,000	10 millions	100	120 millions
a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.				

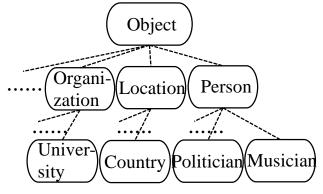
Document datasets				
Name		#(Categories)	#(Leaf Categories)	#(Documents)
20Newsgro	ups (20NG)	6	20	20,000
MCAT (Mar	kets)	9	7	44,033
CCAT (Corp	orate/Industrial)	31	26	47,494
ECAT (Econo	omics)	23	18	19,813
MCAT, CCAT, ECAT are top categories in RCV1 dataset containing manually labeled newswire stories from Reuter Ltd.				
World knowledge bases				
Name	#(Entity Types)	#(Entity Instances)) #(Relation Types)	#(Relation Instances)
Freebase	1,500	40 millions	35,000	2 billions
publicly available knowledge base with entities and relations collaboratively collected by its community members.				
YAGO2	350,000	10 millions	100	120 millions
a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.				
The number is reported in [X. Dong et al. KDD'14], In our downloaded dump of Freebase, we found 79 domains, 2,232 types, and 6,635 properties.				

	Document datasets				
Name		#(Categories)	#(Leaf Categories)	#(Documents)	
20Newsgro	ups (20NG)	6	20	20,000	
MCAT (Mar	kets)	9	7	44,033	
CCAT (Corp	orate/Industrial)	31	26	47,494	
ECAT (Econ	omics)	23	18	19,813	
	MCAT, CCAT, ECAT are top categories in RCV1 dataset containing manually labeled newswire stories from Reuter Ltd.				
World knowledge bases					
Name	#(Entity Types)	#(Entity Instances)) #(Relation Types)	#(Relation Instances)	
Freebase	1,500	40 millions	35,000	2 billions	

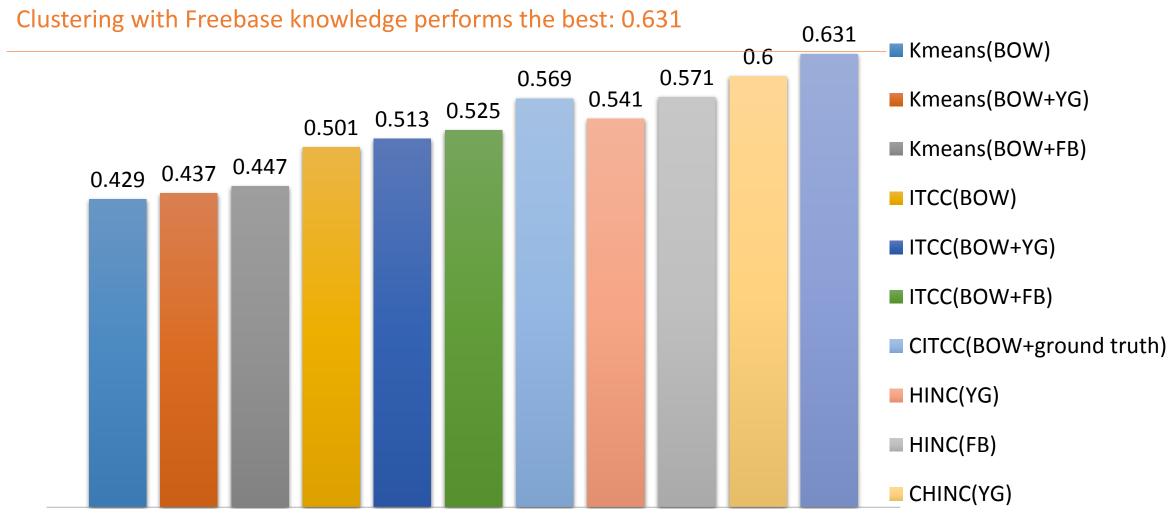
publicly available knowledge base with entities and relations collaboratively collected by its community members.

YAGO2 350,000 120 millions 10 millions 100 a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.

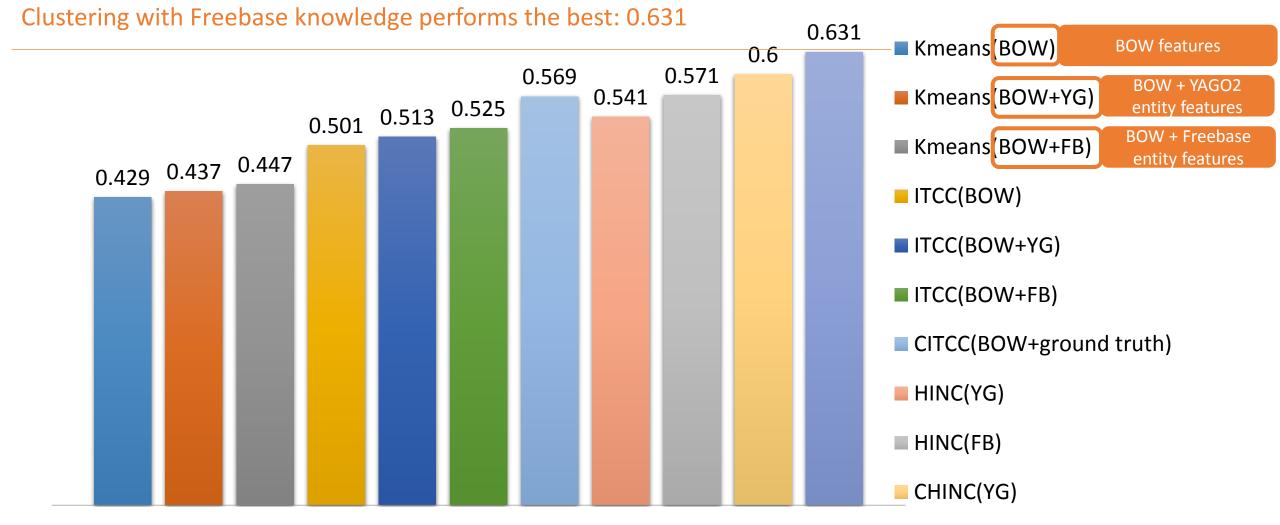
The number is reported in [X. Dong et al. KDD'14], In our downloaded dump of Freebase, we found 79 domains, 2,232 types, and 6,635 properties.



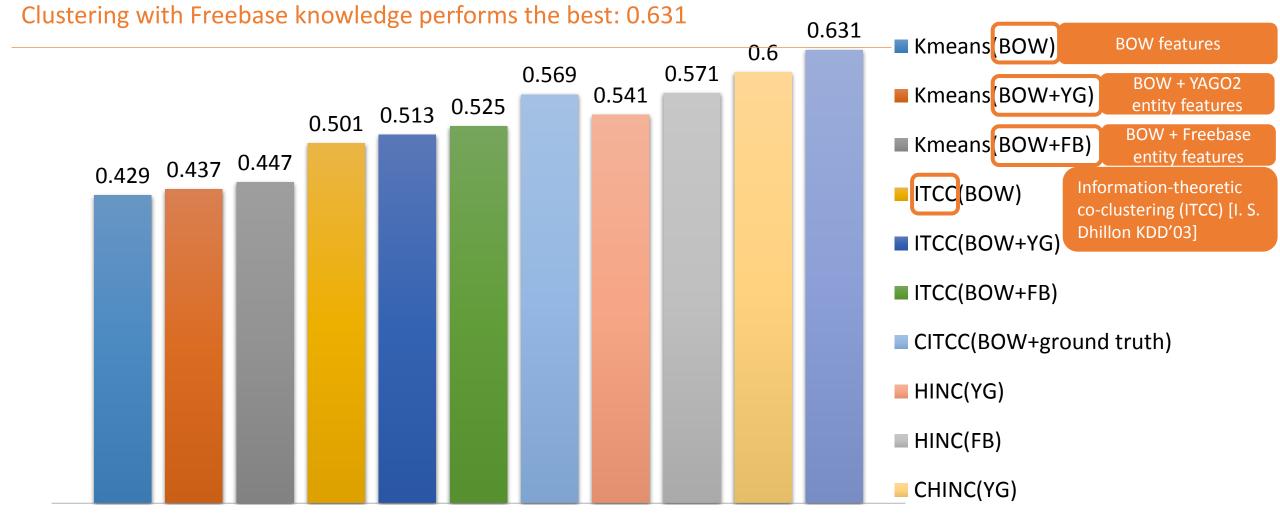
Entity type hierarchy in Freebase and YAGO2



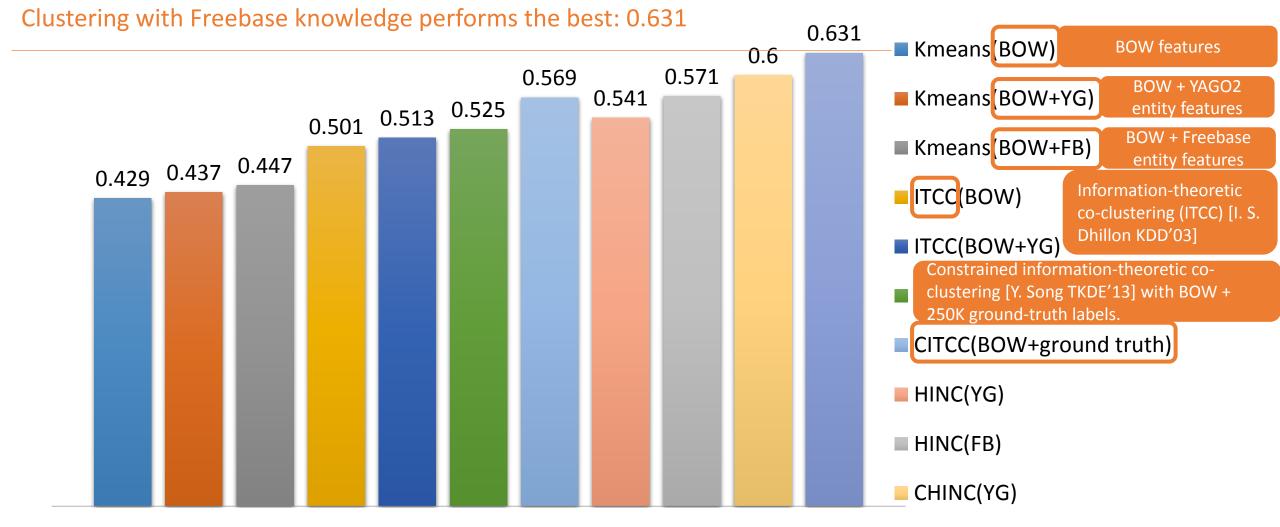
Clustering NMI



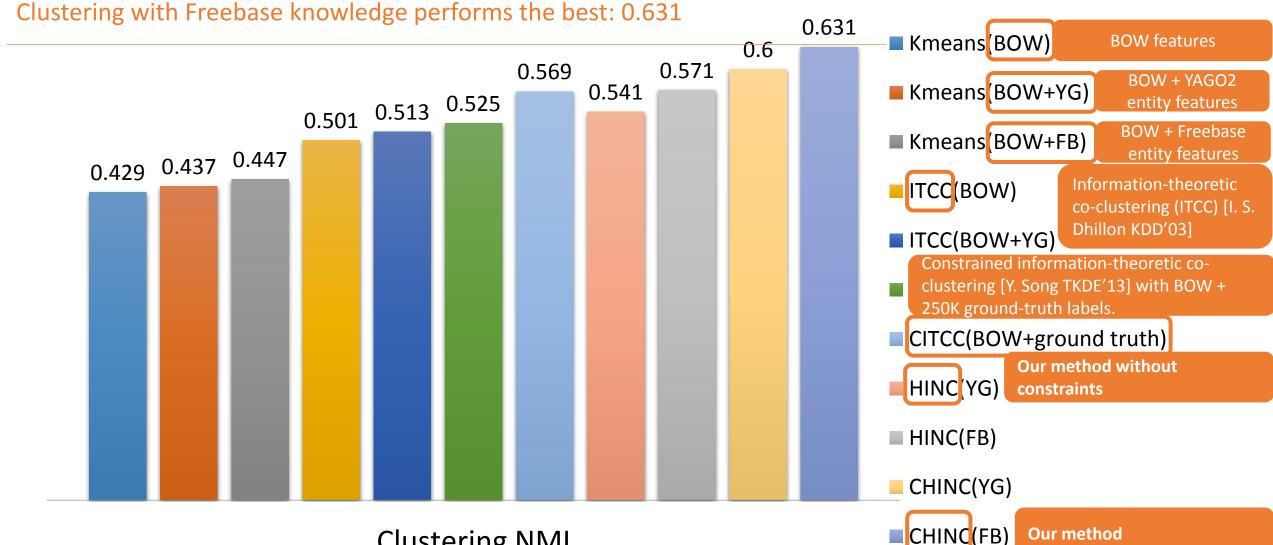
Clustering NMI



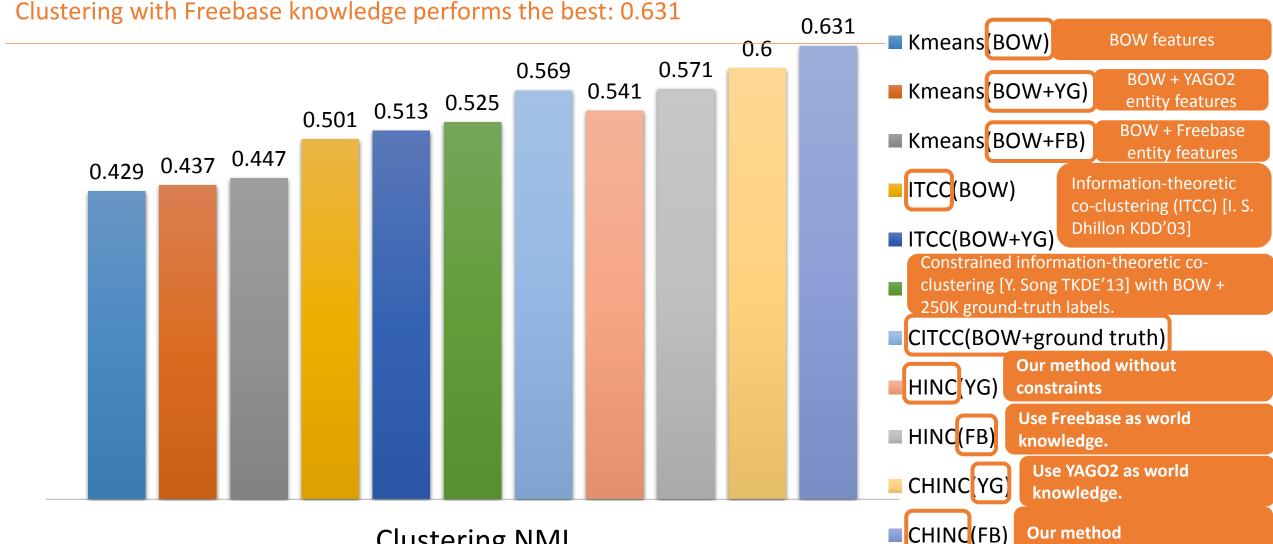
Clustering NMI



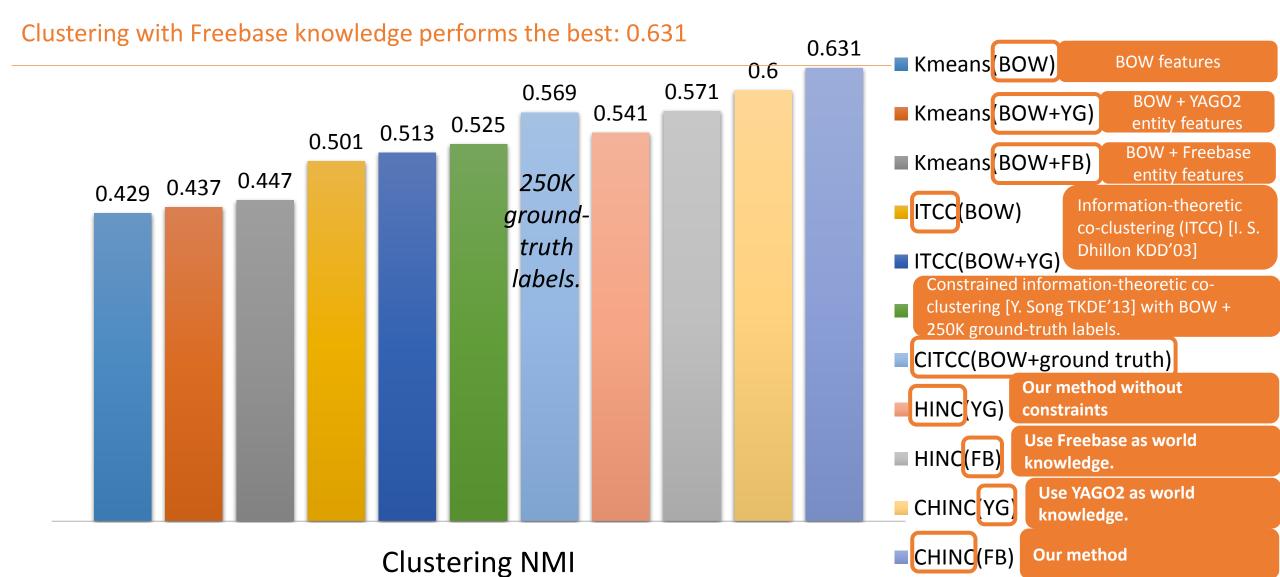
Clustering NMI

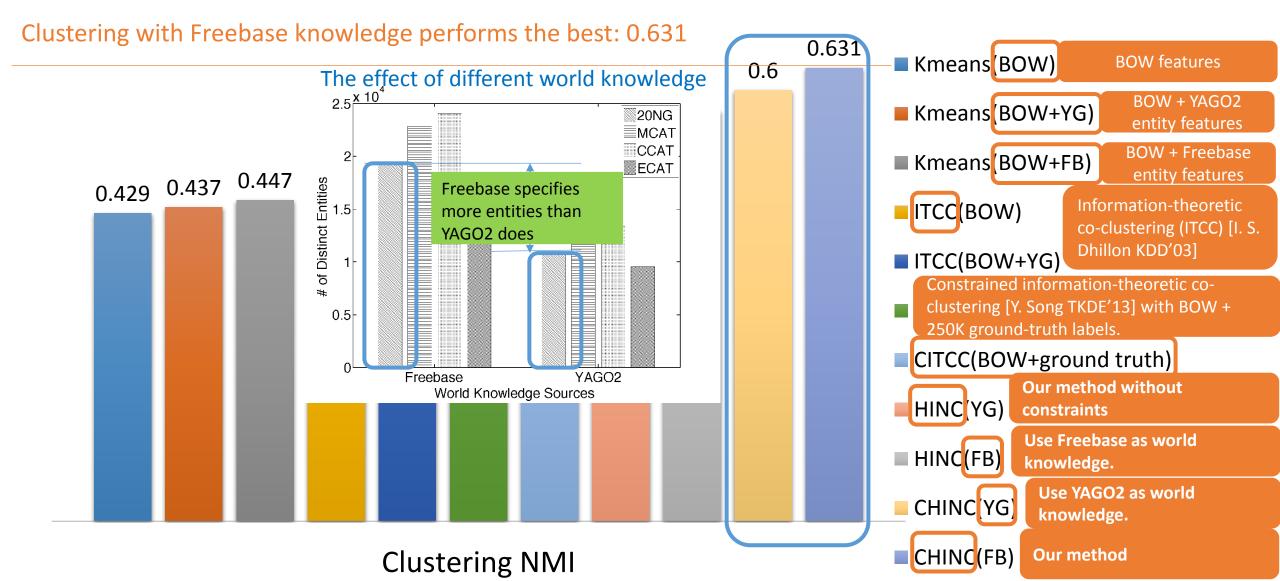


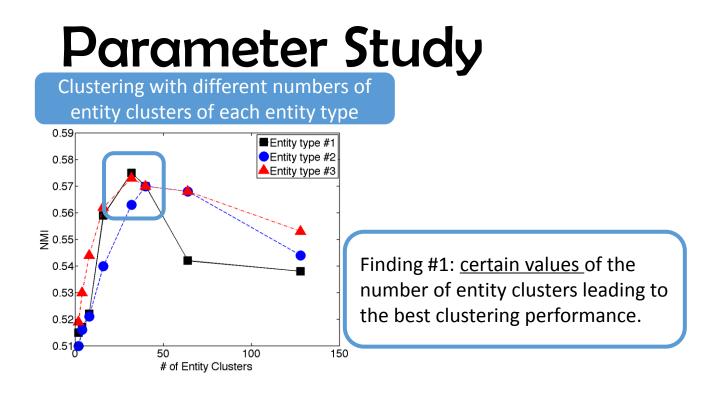
Clustering NMI

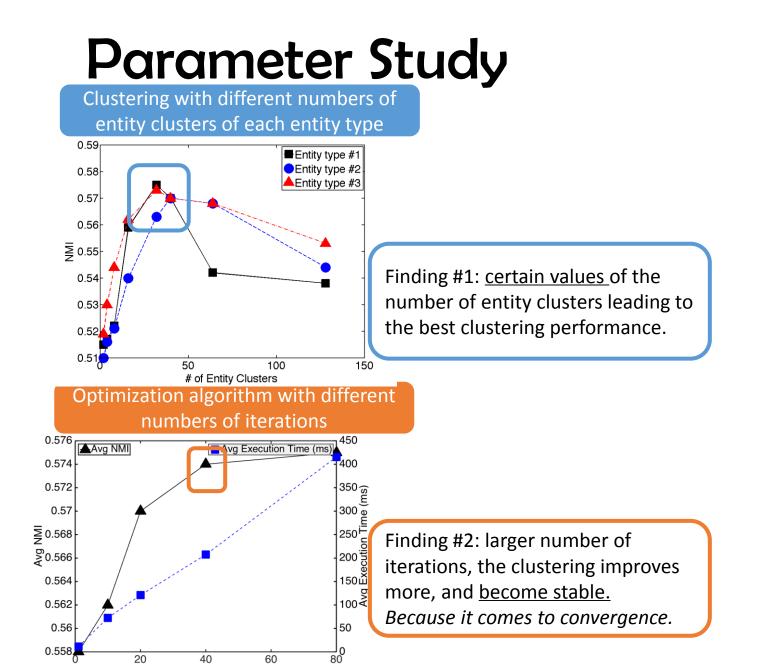


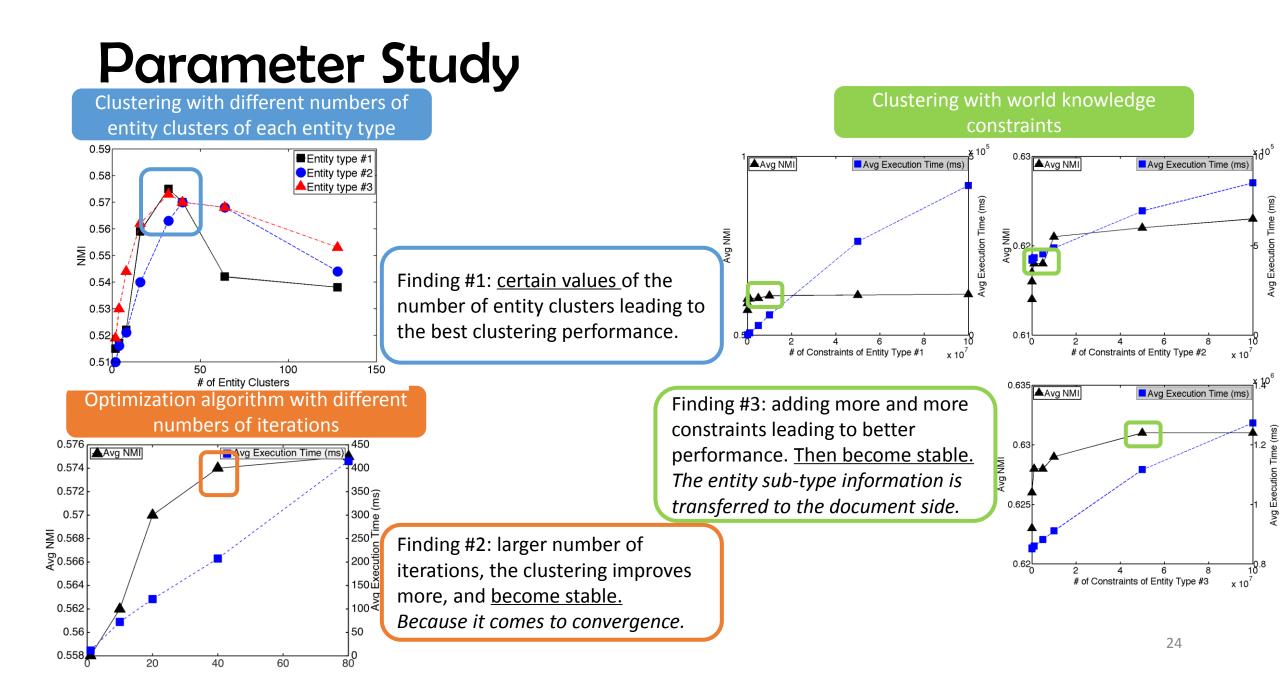
Clustering NMI











Recall	
Problem	Document clustering with world knowledge as indirect supervision.
Framework	World knowledge specification: unsupervised semantic parsing and conceptualization based semantic filtering.
Model	Constrained clustering model with the specified world knowledge represented in heterogeneous information network.

Recall	
Problem	Document clustering with world knowledge as indirect supervision.
Framework	World knowledge specification: unsupervised semantic parsing and conceptualization based semantic filtering.
Model	Constrained clustering model with the specified world knowledge represented in heterogeneous information network.

Thank You! 🙂