Constrained Information-Theoretic Tripartite Graph Clustering to Identify Semantically Similar Relations

IJCAI'15, Buenos Aires, Argentina

Chenguang Wang (Peking Univ.), Yangqiu Song (UIUC), Dan Roth (UIUC),

Chi Wang (MSR), Jiawei Han (UIUC), Heng Ji (RPI), and Ming Zhang (Peking Univ.)

Outline

Problem: Relation Clustering

Approach: Constrained Tripartite Graph Clustering Model

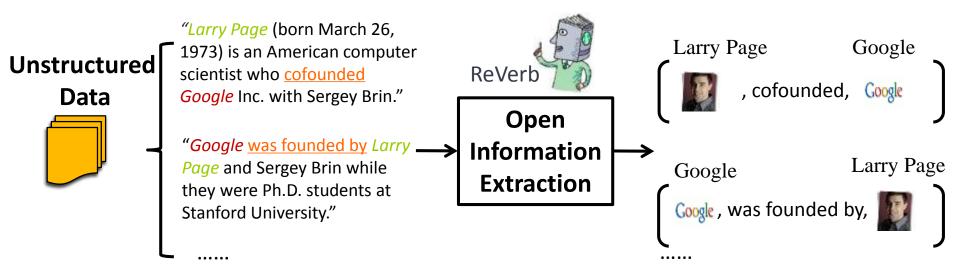
Open Information Extraction Relations

Open information extraction (IE) relations Relations are not canonical: Similar relations are expressed in different natural language ways.

Open Information Extraction Relations

Open information extraction (IE) relations

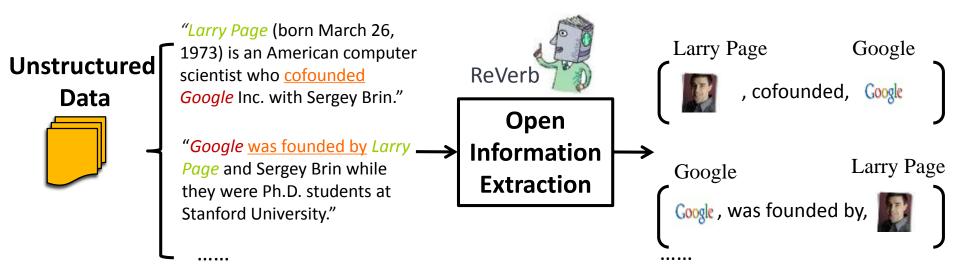
Relations are not canonical: Similar relations are expressed in different natural language ways.



Open Information Extraction Relations

Open information extraction (IE) relations

Relations are not canonical: Similar relations are expressed in different natural language ways.



Knowledge Base Relations

Knowledge base relations

Relations are not canonical: Multi-hop relation and one-hop relation has the same meaning.

Knowledge Base Relations

Knowledge base relations

Relations are not canonical: Multi-hop relation and one-hop relation has the same meaning.

Knowledge Base Relations

.....



WikipediA

Solution: Clustering Relations

Examples

(X, wrote, Y) and (X, 's written work, Y)
(X, is founder of, Y) and (X, is CEO of, Y)
(X, written by, Y) and (X, part of, Z)^(Y, wrote, Z)

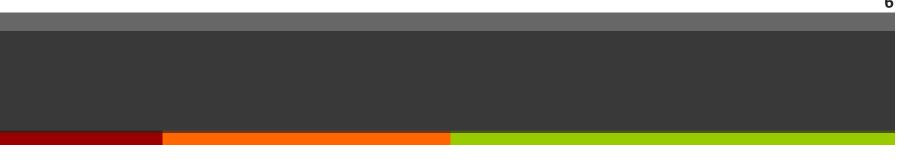
Solution: Clustering Relations

Examples

(X, wrote, Y) and (X, 's written work, Y)
(X, is founder of, Y) and (X, is CEO of, Y)
(X, written by, Y) and (X, part of, Z)^(Y, wrote, Z)

Applications

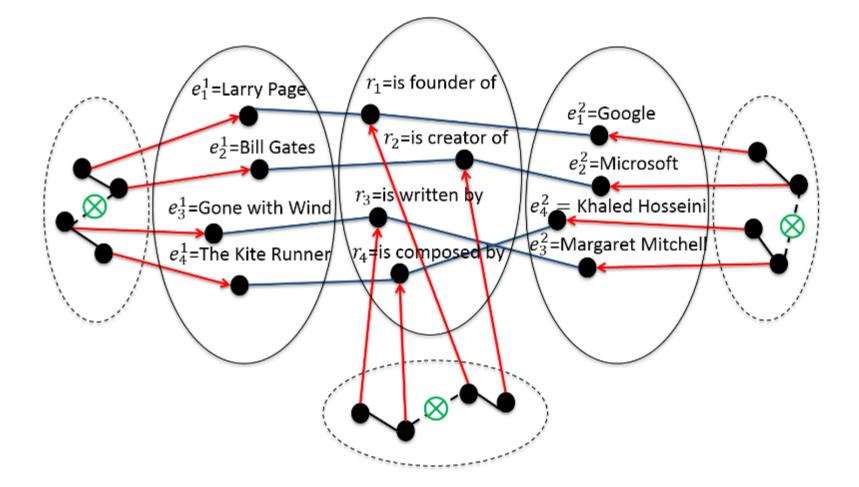
Knowledge base completion [Socher et al., 2013; West et al., 2014] Information extraction [Chan and Roth, 2010; 2011; Li and Ji, 2014] Knowledge inference [Richardson and Domingos, 2006]

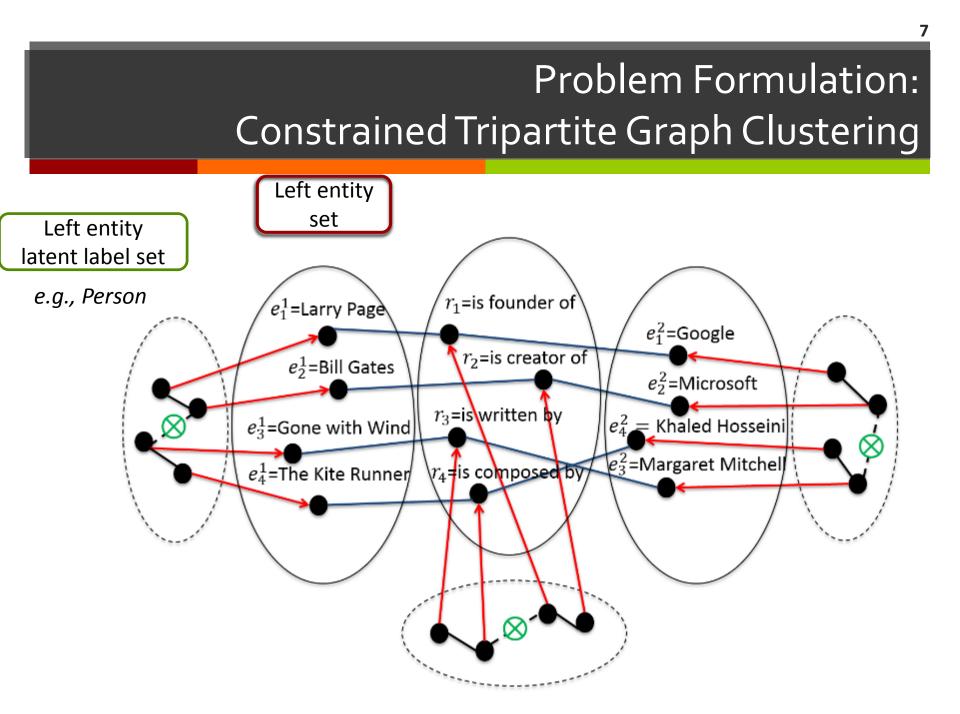


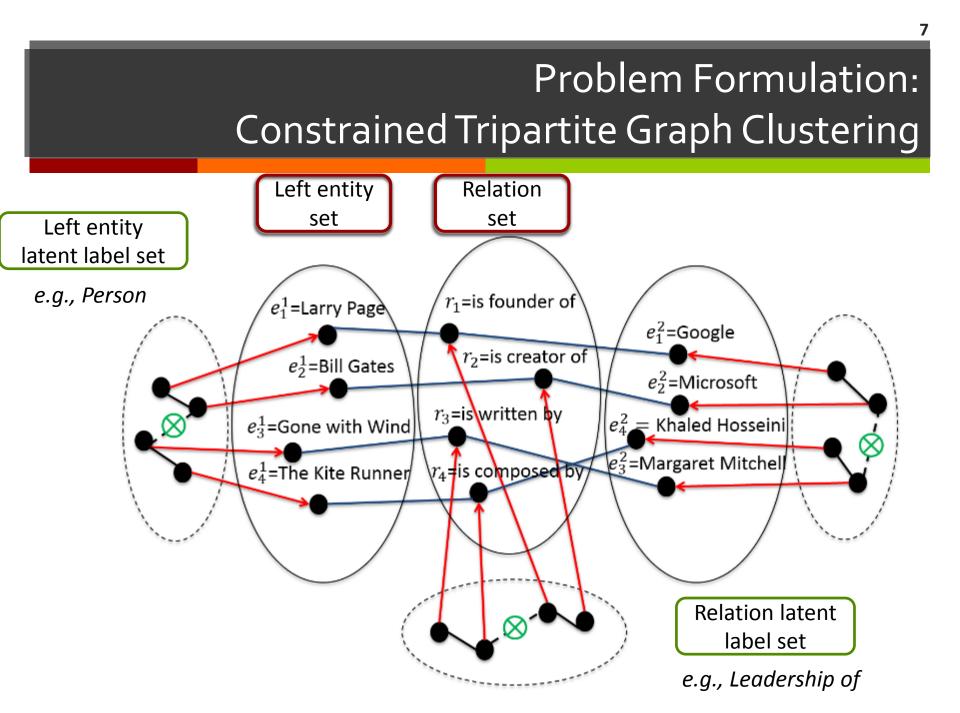
Relation Clustering

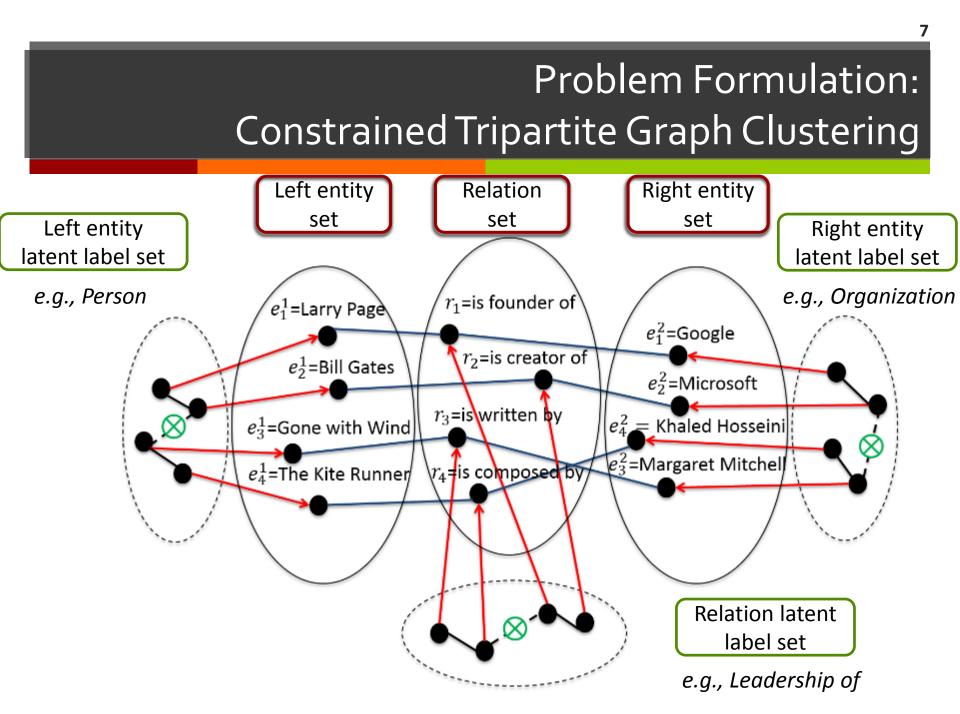
Constrained Tripartite Graph Clustering

Problem Formulation: Constrained Tripartite Graph Clustering

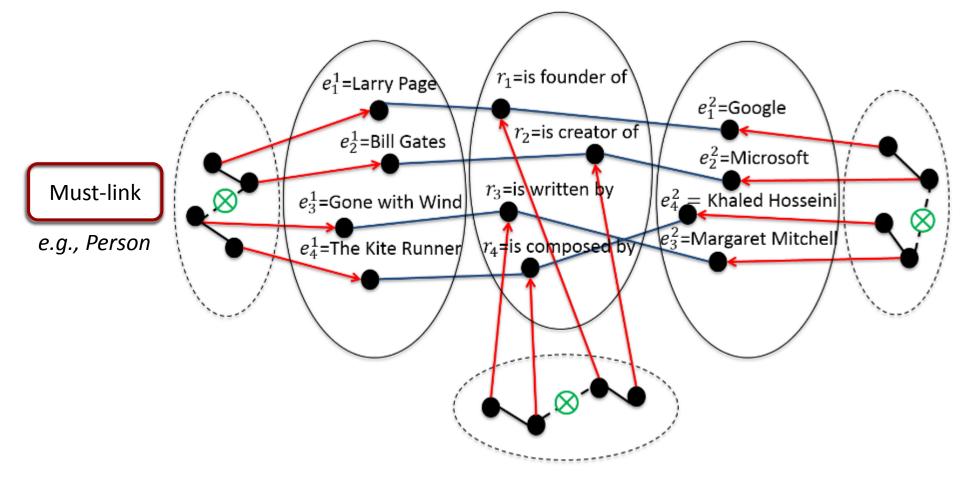




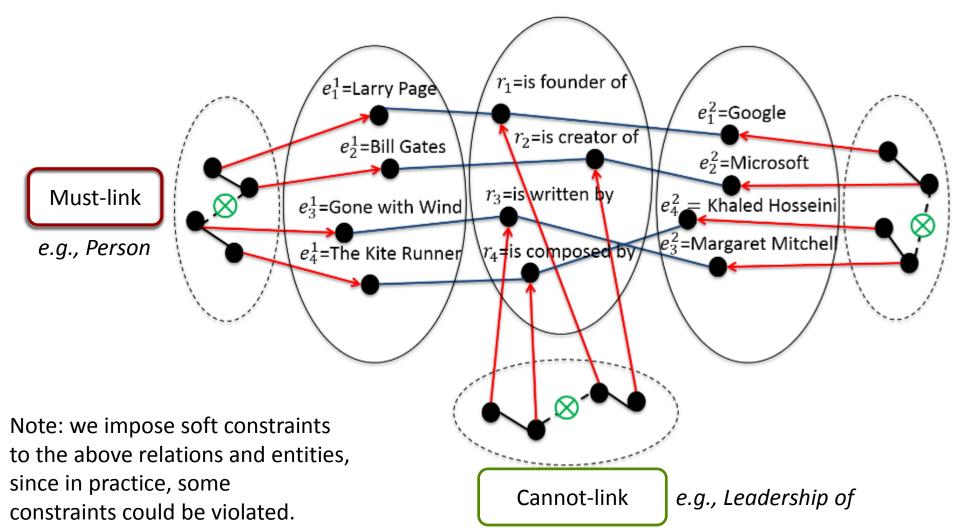




Must-Link and Cannot-Link Constraints



Must-Link and Cannot-Link Constraints



Intuition

Relation triplet joint probability decomposition:

$$p(e_i^1, r_m, e_j^2) \propto p(r_m, e_i^1) p(r_m, e_j^2)$$

Eq 1.

Intuition

Relation triplet joint probability decomposition:

p(

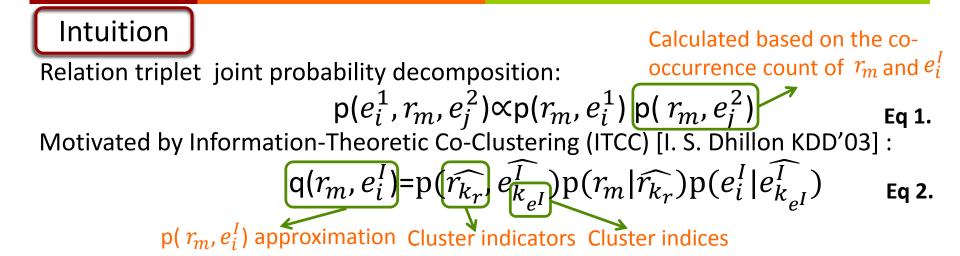
Calculated based on the cooccurrence count of r_m and e_i^I

$$e_i^1, r_m, e_j^2) \propto p(r_m, e_i^1) p(r_m, e_j^2)$$

Eq 1.

Intuition
Relation triplet joint probability decomposition:

$$p(e_i^1, r_m, e_j^2) \propto p(r_m, e_i^1) \begin{bmatrix} c_{alculated based on the co-occurrence count of r_m and e_i^l \\ p(e_i^1, r_m, e_j^2) \propto p(r_m, e_i^1) \begin{bmatrix} p(r_m, e_j^2) \end{bmatrix} \end{bmatrix} \begin{bmatrix} eq 1. \\ eq 1. \\ eq (r_m, e_i^l) = p(\widehat{r_{k_r}}, \widehat{e_{k_{el}}^l}) p(r_m | \widehat{r_{k_r}}) p(e_i^l | \widehat{e_{k_{el}}^l}) \end{bmatrix} Eq 1.$$



Intuition
Relation triplet joint probability decomposition:

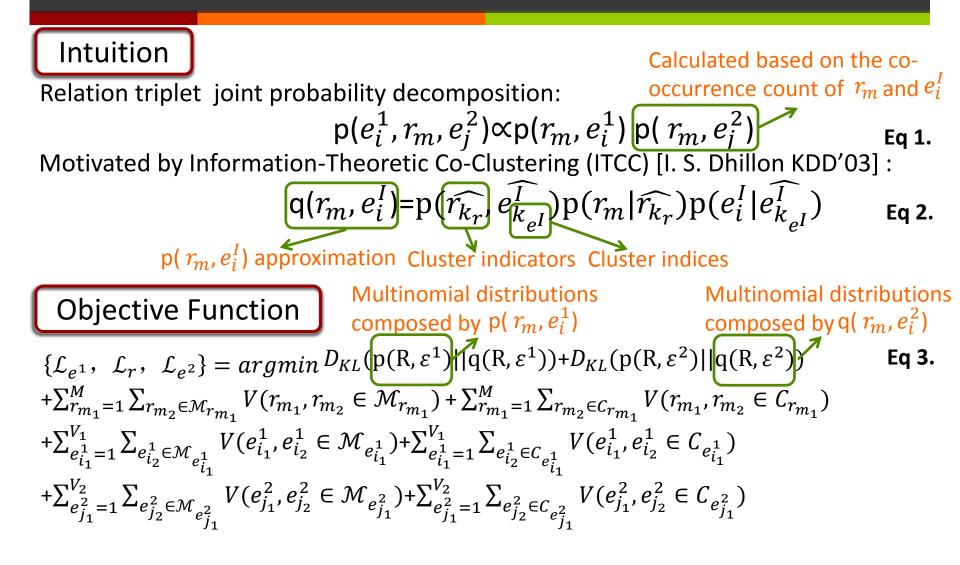
$$p(e_i^1, r_m, e_j^2) \propto p(r_m, e_i^1) p(r_m, e_j^2) \qquad \text{Eq 1.}$$
Motivated by Information-Theoretic Co-Clustering (ITCC) [I. S. Dhillon KDD'03] :

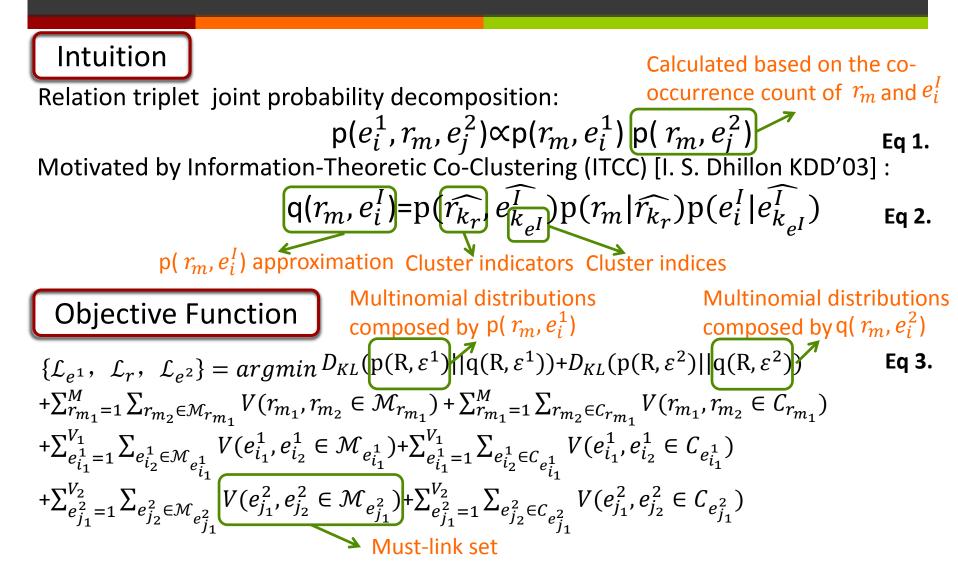
$$q(r_m, e_i^1) = p(r_{k_r}) e_{k_{el}}^1 p(r_m | \hat{r_{k_r}}) p(e_i^1 | e_{k_{el}}^1) \qquad \text{Eq 2.}$$

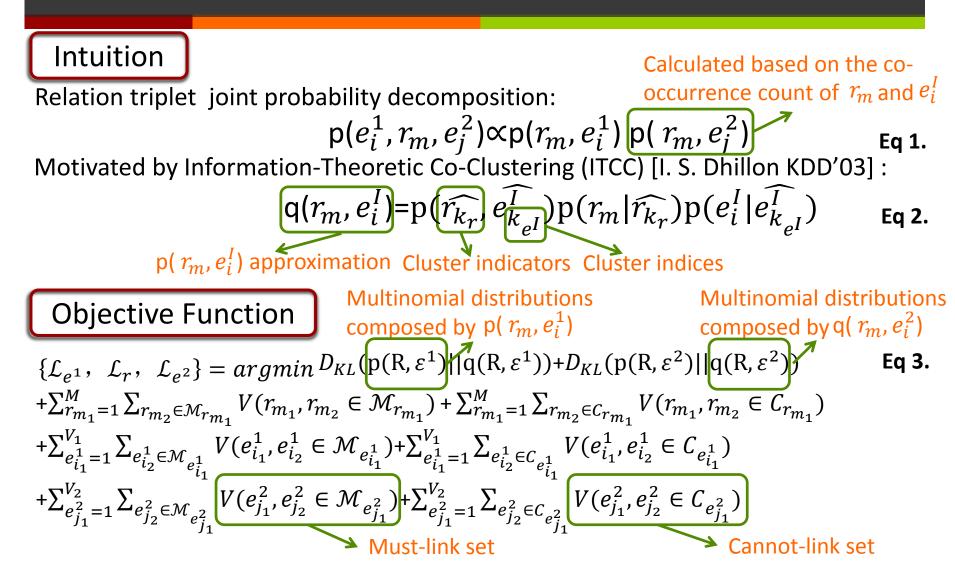
$$p(r_m, e_i^1) \text{ approximation Cluster indicators Cluster indices}$$
Objective Function

$$\{\mathcal{L}_{e^1}, \mathcal{L}_r, \mathcal{L}_{e^2}\} = argmin D_{KL}(p(R, \varepsilon^1)||q(R, \varepsilon^1)) + D_{KL}(p(R, \varepsilon^2)||q(R, \varepsilon^2)) \qquad \text{Eq 3.}$$

$$+\sum_{r_{m_1}=1}^{M} \sum_{r_{m_2}\in\mathcal{M}_{r_{m_1}}} V(r_{m_1}, r_{m_2}\in\mathcal{M}_{r_{m_1}}) + \sum_{e_{i_1}^1=1}^{M} \sum_{e_{i_2}^1\in\mathcal{C}_{e_{i_1}^1}} V(e_{i_1}^1, e_{i_2}^1\in\mathcal{M}_{e_{i_1}^1}) + \sum_{e_{i_1}^1=1}^{V_{k_1}} \sum_{e_{i_2}^1\in\mathcal{C}_{e_{i_1}^1}} V(e_{i_1}^1, e_{i_2}^1\in\mathcal{C}_{e_{i_1}^1}) + \sum_{e_{i_1}^2=1}^{V_{k_2}} \sum_{e_{i_2}^2\in\mathcal{M}_{e_{i_1}^2}} V(e_{i_1}^2, e_{i_2}^2\in\mathcal{M}_{e_{i_1}^2}) + \sum_{e_{i_2}^2=1}^{V_{k_2}} \sum_{e_{i_2}^2\in\mathcal{C}_{e_{i_1}^2}} V(e_{i_1}^2, e_{i_2}^2\in\mathcal{C}_{e_{i_1}^2})$$







		Datasets
Name		Description
Rel-KB	Freebase	KB relations from Freebase, which particularly includes multi-hop relations
Rel-OIE	ReVerb 🥥	Open IE Relations extracted from Wikipedia using ReVerb

		Datasets
Name		Description
Rel-KB	Freebase	KB relations from Freebase, which particularly includes multi-hop relations
Rel-OIE	ReVerb 🥥	Open IE Relations extracted from Wikipedia using ReVerb

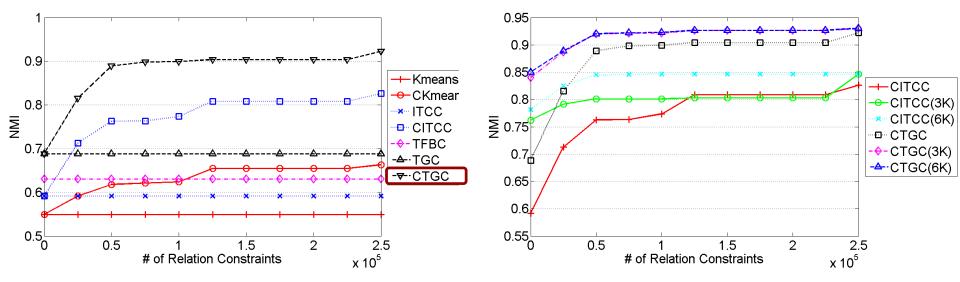
		Datasets
Name		Description
Rel-KB	Freebase	KB relations from Freebase, which particularly includes multi-hop relations
Rel-OIE	ReVerb 🦪	Open IE Relations extracted from Wikipedia using ReVerb

Relation	Constraints for Rel-KB dataset (* Entity Constraints are similarly defined)
Constraint Type	Description
Must-link	If two relations are generated from the same relation category, we add a must-link
Cannot-link	Otherwise
Relation (Constraints for Rel-OIE dataset (* Entity Constraints are similarly defined)
Constraint Type	Description
Must-link	If the similarity between two relation phrases is beyond a predefined threshold (experimentally, 0.5), we add a must-link to these relations
Cannot-link	Otherwise

Comparable Methods

Methods	Description
Kmeans	One-dimensional clustering algorithm
CKmeans	Constrained Kmeans [S. Basu KDD'04]
ITCC	Information-theoretic co-clustering [I. S. Dhillon KDD'03]
CITCC	Constrained information-theoretic co-clustering [Y. Song TKDE'13]
TFBC	Tensor factorization based clustering [I. Sutskever NIPS'09]
TGC	Our method without constraints
CTGC	Our method

Analysis of Clustering Results



Analysis of Clustering Results

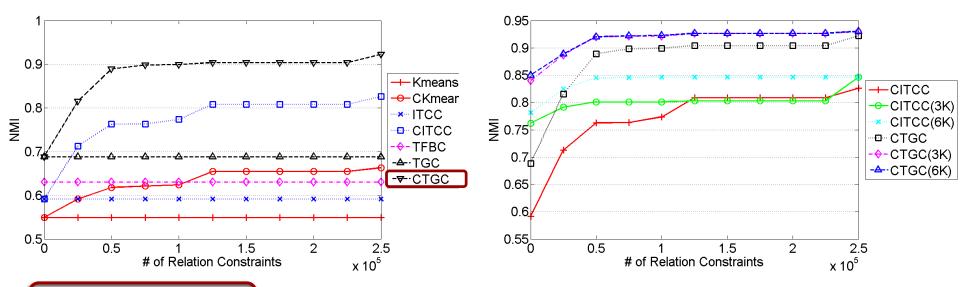


Relation constraints are very effective:

Finding #1:

CTGC and TGC perform better, with more relation constraints in CTGC, the improvement is more significant.

Analysis of Clustering Results



Relation constraints are very effective:

CTGC and TGC perform better, with more relation constraints in CTGC, the improvement is more significant.

Finding #2:

Finding #1:

*Entity constraints are also effective:

Even if we have little knowledge about relations, we can still expect better results if we know knowledge about entities.

Case Study of Clustering Results

	Examples generated by CTGC
Category	Examples
Organization-Founder	(X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)
Actor-Film	(X, act in, Y); (X, , appears in, Y); (X, won best actor for, Y)
	Examples generated by TGC
Category	Examples
Organization-Founder	(X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)
Actor-Film	(X, who played, Y); (X, starred in, Y); (X, 's capital in, Y)

Case Study of Clustering Results

	Examples generated by CTGC
Category	Examples
Organization-Founder	(X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)
Actor-Film	(X, act in, Y); (X, , appears in, Y); (X, won best actor for, Y)
	Examples generated by TGC
Category	Examples
Organization-Founder	(X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)
Actor-Film	(X, who played, Y); (X, starred in, Y); (X, 's capital in, Y)
	Both CTGC and TGC generate reasonable results.

Finding #1:

Both CTGC and TGC generate reasonable results:

The tripartite graph structure enhances the clustering by using entity and relation together.

Case Study of Clustering Results

	Examples generated by CTCC
	Examples generated by CTGC
Category	Examples
Organization-Founder	(X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)
Actor-Film	(X, act in, Y); (X, , appears in, Y); (X, won best actor for, Y)
	Examples generated by TGC
Category	Examples
Organization-Founder	(X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)
Actor-Film	(X, who played, Y); (X, starred in, Y); (X, 's capital in, Y)
Finding #1:	Both CTGC and TGC generate reasonable results: The tripartite graph structure enhances the clustering
	by using entity and relation together.
Finding #2:	CTGC is better than TGC: The must-link and cannot-link constraints help filter
	out illegitimate relations.

Recall

Problem

Relation clustering

CTGC

Constrained information-theoretic tripartite graph clustering model

Results

In both knowledge base and open information extraction, CTGC is effective

Recall

Problem

Relation clustering

CTGC

Constrained information-theoretic tripartite graph clustering model

Results

In both knowledge base and open information extraction, CTGC is effective

Thank You! 😳

If you have any problem,

please contact via wangchenguang@pku.edu.cn