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Open Information Extraction Relations

Open information extraction Relations are not canonical:
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natural language ways.
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has the same meaning.

Knowledge base relations

[

r~ Frecbase _ Harry Potter 1K Rowlin Harry Potter
oo “ J.K Rowling Series R g Series
k(o eri - |
L P, (L e B 1
select knowledge - R MUIti-HOp
Knowledge| Philosopher's Harry Potier >| Relation =1 Philosopher's Harry Potter
Bases ~ Stone Series | Generation Stone Series
- =l partof, B - i partof, .
S - R $ . !
— T ° ph“osophgr-s _ Philosopher's
e J.K Rowling Stone . J.K Rowling Stone
DBdea | <] I -0 A ] "- . g 4 ';"
px & , is author of, [ﬂ , is author of, B ]
\n il . y

WIKIPEDIA ...
‘The Free Encyclopedia



Solution: Clustering Relations
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Applications

Knowledge base completion
Information extraction

Knowledge inference
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Experiments

Name Description
Rel-KB F-'FreebasLE’ KB relations from Freebase, which particularly includesimulti-hop relations
Rel-OIE ReVerb ? Open IE Relations extracted from Wikipedia using ReVerb

Relation Constraints for Rel-KB dataset (* entity constraints are similarly defined)

Constraint Type Description

Must-link If two relations are generated from the same relation category, we add a
must-link

Cannot-link Otherwise

REIatiOn ConStraintS for REI'OIE dataset (* Entity Constraints are similarly defined)

Constraint Type Description

Must-link If the similarity between two relation phrases is beyond a predefined
threshold (experimentally, 0.5), we add a must-link to these relations

Cannot-link Otherwise




Comparable Methods

Methods Description

Kmeans One-dimensional clustering algorithm

CKmeans Constrained Kmeans [S. Basu KDD’04]

ITCC Information-theoretic co-clustering [I. S. Dhillon KDD’03]

CITCC Constrained information-theoretic co-clustering [Y. Song TKDE'13]
TFBC Tensor factorization based clustering [I. Sutskever NIPS'09]

TGC Our method without constraints

CTGC Our method
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Case Study of Clustering Results

Examples generated by CTGC
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| Finding #1: ' Both CTGC and TGC generate reasonable results:
The tripartite graph structure enhances the clustering
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I Finding #2: ' CTGC is better than TGC:
The must-link and cannot-link constraints help filter

out illegitimate relations.
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