


Constrained Information-Theoretic 
Tripartite Graph Clustering to Identify 
Semantically Similar Relations
IJCAI’15, Buenos Aires, Argentina

Chenguang Wang (Peking Univ.), Yangqiu Song (UIUC), Dan Roth (UIUC), 

Chi Wang (MSR), Jiawei Han (UIUC), Heng Ji (RPI), and Ming Zhang (Peking Univ.)

1



Outline

Problem: Relation Clustering

Approach: Constrained Tripartite 
Graph Clustering Model

Experiments

2



Open Information Extraction Relations

3

Relations are not canonical:
Similar relations are expressed in different 
natural language ways.

Open information extraction 
(IE) relations



Open Information Extraction Relations

3

Unstructured 
Data

“Larry Page (born March 26, 
1973) is an American computer 
scientist who cofounded
Google Inc. with Sergey Brin.”

“Google was founded by Larry 
Page and Sergey Brin while 
they were Ph.D. students at 
Stanford University.”

……

Open 
Information 
Extraction

GoogleLarry Page

, cofounded,

Google Larry Page

, was founded by,

ReVerb

Relations are not canonical:
Similar relations are expressed in different 
natural language ways.

Open information extraction 
(IE) relations

……



Open Information Extraction Relations

3

Unstructured 
Data

“Larry Page (born March 26, 
1973) is an American computer 
scientist who cofounded
Google Inc. with Sergey Brin.”

“Google was founded by Larry 
Page and Sergey Brin while 
they were Ph.D. students at 
Stanford University.”

……

Open 
Information 
Extraction

GoogleLarry Page

, cofounded,

Google Larry Page

, was founded by,

ReVerb

Relations are not canonical:
Similar relations are expressed in different 
natural language ways.

Open information extraction 
(IE) relations

……



Knowledge Base Relations

4

Relations are not canonical:
Multi-hop relation and one-hop relation 
has the same meaning.

Knowledge base relations



Knowledge Base Relations

4

Relations are not canonical:
Multi-hop relation and one-hop relation 
has the same meaning.

Knowledge base relations



Knowledge Base Relations

4

Knowledge 
Bases

, is author of,

J.K Rowling

, written work, 

Harry Potter 

Series

, part of, 

Harry Potter 

Series

Philosopher's 

Stone

……

J.K Rowling
Philosopher's 

Stone

Multi-Hop 
Relation 

Generation

Relations are not canonical:
Multi-hop relation and one-hop relation 
has the same meaning.

Knowledge base relations

……

, is author of,

J.K Rowling

, written work, 

Harry Potter 

Series

, part of, 

Harry Potter 

Series

Philosopher's 

Stone

J.K Rowling
Philosopher's 

Stone



Solution: Clustering Relations
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Examples

(X, wrote, Y) and (X, ’s written work, Y)

(X, is founder of, Y) and (X, is CEO of, Y)

(X, written by, Y) and (X, part of, Z)^(Y, wrote, Z)



Solution: Clustering Relations

Knowledge base completion [Socher et al., 2013; West et al., 2014]

Information extraction [Chan and Roth, 2010; 2011; Li and Ji, 2014]

Knowledge inference [Richardson and Domingos, 2006]
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Examples

Applications

(X, wrote, Y) and (X, ’s written work, Y)

(X, is founder of, Y) and (X, is CEO of, Y)

(X, written by, Y) and (X, part of, Z)^(Y, wrote, Z)
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Must-Link and Cannot-Link Constraints

Must-link
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Must-Link and Cannot-Link Constraints

Must-link

Cannot-link e.g., Leadership of

e.g., Person

Note: we impose soft constraints 
to the above relations and entities, 
since in practice, some 
constraints could be violated.
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Datasets

Name Description

Rel-KB KB relations from Freebase, which particularly includes multi-hop relations

Rel-OIE Open IE Relations extracted from Wikipedia using ReVerbReVerb

Relation Constraints for Rel-KB dataset (* Entity Constraints are similarly defined)

Constraint Type Description

Must-link If two relations are generated from the same relation category, we add a
must-link

Cannot-link Otherwise

Relation Constraints for Rel-OIE dataset (* Entity Constraints are similarly defined)

Constraint Type Description

Must-link If the similarity between two relation phrases is beyond a predefined
threshold (experimentally, 0.5), we add a must-link to these relations

Cannot-link Otherwise



Comparable Methods

Methods Description

Kmeans One-dimensional clustering algorithm

CKmeans Constrained Kmeans [S. Basu KDD’04]

ITCC Information-theoretic co-clustering [I. S. Dhillon KDD’03]

CITCC Constrained information-theoretic co-clustering [Y. Song TKDE’13]

TFBC Tensor factorization based clustering [I. Sutskever NIPS’09]

TGC Our method without constraints

CTGC Our method
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CTGC and TGC perform better, with more relation constraints 
in CTGC, the improvement is more significant.
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Finding #1: Relation constraints are very effective:
CTGC and TGC perform better, with more relation constraints 
in CTGC, the improvement is more significant.

Finding #2: *Entity constraints are also effective:
Even if we have little knowledge about relations, we can still 
expect better results if we know knowledge about entities.
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Organization-Founder (X, founded by, Y); (X, led by, Y); (Y, is the owner of, X); (X, , sold by, Y)

Actor-Film (X, who played, Y); (X, starred in, Y); (X, ’s capital in, Y)

Finding #1: Both CTGC and TGC generate reasonable results:
The tripartite graph structure enhances the clustering 
by using entity and relation together.

Finding #2: CTGC is better than TGC:
The must-link and cannot-link constraints help filter 
out illegitimate relations.
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Thank You! 
If you have any problem, 

please contact via wangchenguang@pku.edu.cn

mailto:wangchenguang@pku.edu.cn

