
Benchmarking Language Models
for Code Syntax Understanding

Da Shen1, Xinyun Chen2†, Chenguang Wang3†, Koushik Sen4, Dawn Song4

†Corresponding authors
1University of Maryland, College Park, 2Google Research, Brain Team
3Washington University in St. Louis, 4University of California, Berkeley

1

Pre-trained language models can understand code

● Represent the input as a token sequence without explicitly modeling its structure.

● Impressive performance in both NLP and program understanding.

Transformer architecture.
(Vaswani et. al.)

BERT pre-training. (Devlin et. al.)

Results on code search

Model PYTHON JAVA

CNN 57.1 52.7

BIRNN 32.1 28.7

ROBERTA 80.1 66.6

CODEBERT 86.9 74.8

2

What is the reason behind strong understanding?

● Language models also achieve good
results on natural language understanding
tasks.

● One of the reasons: attention heads learn
to capture natural language syntax during
pre-training.

3

Does pre-training capture programming language syntax?

● We create the CodeSyntax dataset to benchmark pre-trained models for identifying
the syntactic structures of programs.

● Key findings: pre-trained code language models even perform worse than simple
offset baselines on code syntax understanding tasks.

4

Our CodeSyntax dataset

● For code syntax understanding.

● Python and Java source code from
CodeSearchNet.

● Each code sample is an entire function.

● Annotated with syntactic relationships
between tokens.

Head node
Dependent
node

5

Our CodeSyntax dataset

● Compared to natural language dependencies, the relation edges in the programs
tend to connect tokens much farther away from each other.

6

Results

● Surprisingly, attention heads do not
effectively capture code syntax.

● RoBERTa vs. CodeBERT:
Pre-training on a large-scale code
corpus, in addition to natural language
corpus, does not yield a notably better
understanding of code syntax.

7

Evaluation

● Code Models: CuBERT and CodeBERT

● Metric: Top-k scores. Given a head token, the
prediction is correct if the attention weight over
the dependent token is among the top-k highest.

● Baselines:

○ Offset Baseline with fixed offset i.

○ Keyword baseline with fixed keyword key.

8

Case studies

● Attention is highly capable of performing
keyword matching.

● When the head and dependent tokens are
diverse, it is challenging for attention.

● Attention can not effectively utilize the
relative positions of tokens to learn the
relations, even if the tokens are nearby.

9

Conclusion
● Programming languages have hierarchical structures, long-term dependencies,

and frequent keywords.

● For code syntax understanding, the pre-trained models even perform worse than
simple baselines, and often attend to frequent nearby tokens regardless of
hierarchical code structure.

● Designing new architectures and pre-training algorithms to leverage code
structures are important future work for code learning.

10

Thank you!

Code: https://github.com/dashends/CodeSyntax

11

https://github.com/dashends/CodeSyntax

