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Pre-trained language models can understand code

● Represent the input as a token sequence without explicitly modeling its structure.

● Impressive performance in both NLP and program understanding.

Transformer architecture. 
(Vaswani et. al.)

BERT pre-training. (Devlin et. al.)

Results on code search

Model PYTHON JAVA

CNN 57.1 52.7

BIRNN 32.1 28.7

ROBERTA 80.1 66.6

CODEBERT 86.9 74.8
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What is the reason behind strong understanding?

● Language models also achieve good 
results on natural language understanding 
tasks. 

● One of the reasons: attention heads learn 
to capture natural language syntax during 
pre-training.
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Does pre-training capture programming language syntax?

● We create the CodeSyntax dataset to benchmark pre-trained models for identifying 
the syntactic structures of programs.

● Key findings: pre-trained code language models even perform worse than simple 
offset baselines on code syntax understanding tasks.
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Our CodeSyntax dataset

● For code syntax understanding.

● Python and Java source code from 
CodeSearchNet.

● Each code sample is an entire function.

● Annotated with syntactic relationships 
between tokens.

Head node
Dependent 
node
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Our CodeSyntax dataset

● Compared to natural language dependencies, the relation edges in the programs 
tend to connect tokens much farther away from each other.
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Results

● Surprisingly, attention heads do not 
effectively capture code syntax.

● RoBERTa vs. CodeBERT: 
Pre-training on a large-scale code 
corpus, in addition to natural language 
corpus, does not yield a notably better 
understanding of code syntax.
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Evaluation

● Code Models: CuBERT and CodeBERT

● Metric: Top-k scores. Given a head token, the 
prediction is correct if the attention weight over 
the dependent token is among the top-k highest.

● Baselines:

○ Offset Baseline with fixed offset i.

○ Keyword baseline with fixed keyword key.
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Case studies

● Attention is highly capable of performing 
keyword matching.

● When the head and dependent tokens are 
diverse, it is challenging for attention.

● Attention can not effectively utilize the 
relative positions of tokens to learn the 
relations, even if the tokens are nearby.
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Conclusion
● Programming languages have hierarchical structures, long-term dependencies, 

and frequent keywords.

● For code syntax understanding, the pre-trained models even perform worse than 
simple baselines, and often attend to frequent nearby tokens regardless of 
hierarchical code structure.

● Designing new architectures and pre-training algorithms to leverage code 
structures are important future work for code learning.
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Thank you!

Code: https://github.com/dashends/CodeSyntax
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