P

Eip EMNLP

Yy 2022

Benchmarking Language Models
for Code Syntax Understanding

Da Shen’, Xinyun Chen?!, Chenguang Wang?®', Koushik Sen*, Dawn Song*

TCorresponding authors
"University of Maryland, College Park, 2Google Research, Brain Team
SWashington University in St. Louis, “University of California, Berkeley

Pre-trained language models can understand code

e Represent the input as a token sequence without explicitly modeling its structure.

e Impressive performance in both NLP and program understanding.

\.

COd e B E RT (Feng et. al.)

J

CLS

T 1

T 1

T

T

return maximum value if a > b: return a ..

text

code

Results on code search

Model PYTHON
CNN 571
BIRNN 32.1
ROBERTA 80.1

CODEBERT 86.9

JAVA
52.7
28.7
66.6
74.8

What is the reason behind strong understanding?

nsubj

. [(e |
Language models also achieve good L_ib
results on natural language understanding / -\
tasks. There were many pioneer PC contributors.

. [CLS] [CLS]
One of the reasons: attention heads learn The The
to capture natural language syntax during complicated complicated
.. language >language

pre-training. i i

the \} the
huge huge
new - new
law law
has. has
muddied. muddied

the -
fight

the
fight

[SEP]———[sEp]

Does pre-training capture programming language syntax?

=1 P

(a) There were many pioneer PC contributors.

[‘{Assign}*\ l{Attribute}\ fCallF\
Offset BERT RoBERTa CodeBERT Offset CuBERT CodeBERT RoBERTa

(b) result = object.function(argument) English Syntax Understanding ~ Python Syntax Understanding

e We create the CodeSyntax dataset to benchmark pre-trained models for identifying
the syntactic structures of programs.

e Key findings: pre-trained code language models even perform worse than simple
offset baselines on code syntax understanding tasks.

Our CodeSyntax dataset

e For code syntax understanding.

e Python and Java source code from
CodeSearchNet.

e Each code sample is an entire function.

e Annotated with syntactic relationships
between tokens.

(Hoadnoss | [

Dependent
node

\

/
Relation Code Exgmple
head—dependent\ Python Java

Assign: ‘target — 10’ int target = 10;
target—value
Call: function(arg) function(arg);
func—args
For: for target in iter: for (initializers;
for—body body test; updaters) {
body;
}
If: if condition: if (condition) {
if—else body1 bodyl;
else: } else {
body2 body?2;
}
If: if condition: if (condition) {
if—body body1 body1;
else: } else {
body2 body?2;

}

Our CodeSyntax dataset

e Compared to natural language dependencies, the relation edges in the programs

tend to connect tokens much farther away from each other.

201 [python
java

151
-+ -t
c c
3 3
O 10 o

5_

04 o o ; J N 0 |

0 20 40 60 80 100 120 140 160 180 -10-8 -6 -4 -2 0 2 4 6 8 10
offset

offset

(a) CodeSyntax. (b) Natural language corpus.

Results

Top-k Score

Language Mode! k=1 k=3 k=10 k=20
e Surprisingly, attention heads do not Offset 436 637 873 949
effectively capture code syntax. Keyword 157 219 936 933

Python Combined 494 69.7 90.1 96.3
CuBERT 392 584 813 914
CodeBERT 33.1 51.8 786 892
RoBERTa 345 569 825 913

Diff (Model - Baseline) -10.2 -11.3 -8.8 -49

understanding of code syntax. Offset 521 715 BI1 943
Keyword 24 273 302 306

Java Combined 604 77.2 90.0 96.1

CuBERT 39.7 59.8 80.0 90.2

CodeBERT 363 57.1 783 88.8

RoBERTa 347 57.8 803 90.5

Diff (Model - Baseline) -20.7 -174 -10.0 -59

e ROBERTa vs. CodeBERT:
Pre-training on a large-scale code
corpus, in addition to natural language
corpus, does not yield a notably better

o
DN

\

Evaluation

e Code Models: CuBERT and CodeBERT

e Metric: Top-k scores. Given a head token, the
prediction is correct if the attention weight over

the dependent token is among the top-k highest.

e Baselines:
o Offset Baseline with fixed offset i.

o Keyword baseline with fixed keyword key.

ground truth relation

tokenl token2 token3 token4

) 0.1
attention 0.4

. 0.5
weights

2 tokens away

tokenl token2 token3

The next else keyword

tokenl token2 ... else ...

Case studies

e Attention is highly capable of performing
keyword matching.

e \When the head and dependent tokens are
diverse, it is challenging for attention.

e Attention can not effectively utilize the
relative positions of tokens to learn the
relations, even if the tokens are nearby.

: Score :
Relation CuBERT Offset Offset Diff
If:if—else 92.7 3.7 17 87.1
If:body—orelse 29.2 71 12 22.0
If:if —body 31> 231 7 8.4
For:for—body 304 329 7 -23
Assign:target—value 39.8 mn2 2 -31.4
While:test—body 16.2 485 4 -32.4
Call:func—args 59.3 932 2 -33.9

Conclusion

e Programming languages have hierarchical structures, long-term dependencies,
and frequent keywords.

e For code syntax understanding, the pre-trained models even perform worse than
simple baselines, and often attend to frequent nearby tokens regardless of
hierarchical code structure.

e Designing new architectures and pre-training algorithms to leverage code
structures are important future work for code learning.

Thank you!

Code: https://qgithub.com/dashends/CodeSyntax

11

https://github.com/dashends/CodeSyntax

