

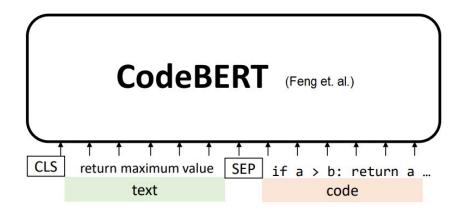
Benchmarking Language Models for Code Syntax Understanding

Da Shen¹, Xinyun Chen^{2†}, Chenguang Wang^{3†}, Koushik Sen⁴, Dawn Song⁴

[†]Corresponding authors ¹University of Maryland, College Park, ²Google Research, Brain Team ³Washington University in St. Louis, ⁴University of California, Berkeley

Pre-trained language models can understand code

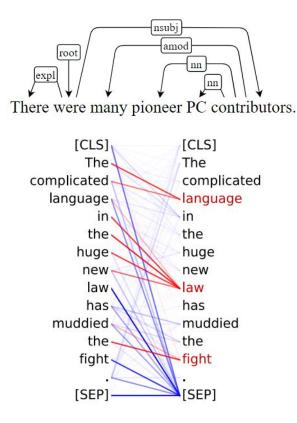
- Represent the input as a token sequence without explicitly modeling its structure.
- Impressive performance in both NLP and program understanding.



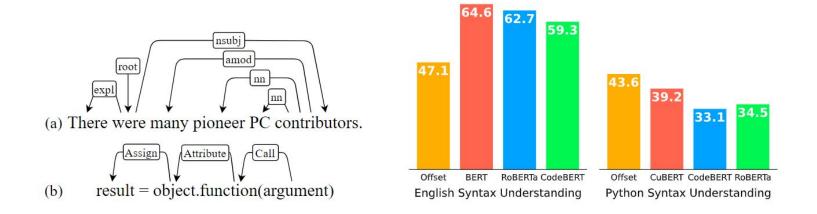
Results on code search						
Model	PYTHON	JAVA				
CNN	57.1	52.7				
BIRNN	32.1	28.7				
ROBERTA	80.1	66.6				
CODEBERT	86.9	74.8				

What is the reason behind strong understanding?

- Language models also achieve good results on natural language understanding tasks.
- One of the reasons: attention heads learn to capture natural language syntax during pre-training.



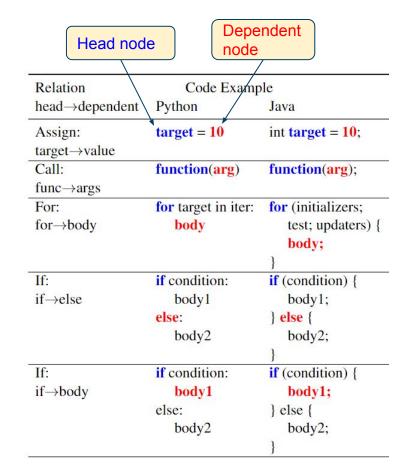
Does pre-training capture programming language syntax?



- We create the CodeSyntax dataset to benchmark pre-trained models for identifying the syntactic structures of programs.
- Key findings: pre-trained code language models even perform worse than simple offset baselines on code syntax understanding tasks.

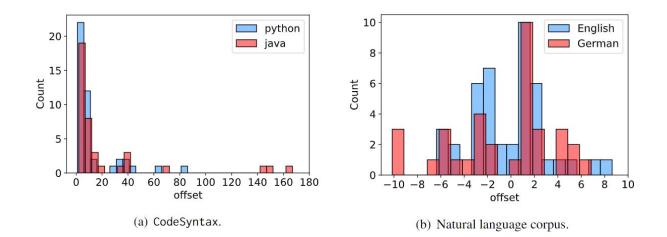
Our CodeSyntax dataset

- For code syntax understanding.
- Python and Java source code from CodeSearchNet.
- Each code sample is an entire function.
- Annotated with syntactic relationships between tokens.



Our CodeSyntax dataset

• Compared to natural language dependencies, the relation edges in the programs tend to connect tokens much farther away from each other.



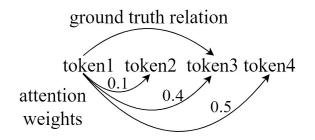
Results

- Surprisingly, attention heads do not effectively capture code syntax.
- RoBERTa vs. CodeBERT: Pre-training on a large-scale code corpus, in addition to natural language corpus, does not yield a notably better understanding of code syntax.

Language	Model	Top-k Score			
		k=1	k=3	k=10	k=20
	Offset	43.6	63.7	87.3	94.9
Python	Keyword	15.7	21.9	23.6	23.8
	Combined	49.4	69.7	90.1	96.3
	CuBERT	39.2	58.4	81.3	91.4
	CodeBERT	33.1	51.8	78.6	89.2
	RoBERTa	34.5	56.9	82.5	91.3
Diff (Mod	lel - Baseline)	-10.2	-11.3	- <mark>8.8</mark>	-4.9
Java _	Offset	52.7	71.5	87.1	94.3
	Keyword	22.4	27.3	30.2	30.6
	Combined	60.4	77.2	90.0	96.1
	CuBERT	39.7	59.8	80.0	90.2
	CodeBERT	36.3	57.1	78.3	88.8
	RoBERTa	34.7	57.8	80.3	90.5
Diff (Mod	lel - Baseline)	-20.7	- <mark>1</mark> 7.4	-10.0	-5.9

Evaluation

- Code Models: CuBERT and CodeBERT
- **Metric:** Top-k scores. Given a head token, the prediction is correct if the attention weight over the dependent token is among the top-k highest.
- Baselines:
 - Offset Baseline with fixed offset *i*.
 - Keyword baseline with fixed keyword *key*.



2 tokens away token1 token2 token3

The next else keyword token1 token2 ... else ...

Case studies

- Attention is highly capable of performing keyword matching.
- When the head and dependent tokens are diverse, it is challenging for attention.
- Attention can not effectively utilize the relative positions of tokens to learn the relations, even if the tokens are nearby.

Relation	Score		Offect	Diff
Relation	CuBERT Offse		Unset	
If:if→else	92.7	5.7	17	87.1
If:body→orelse	29.2	7.1	12	22.0
If:if→body	31.5	23.1	7	8.4
For:for→body	30.4	32.7	7	-2.3
Assign:target→value	39.8	71.2	2	-31.4
While:test→body	16.2	48.5	4	-32.4
Call:func→args	59.3	93.2	2	-33.9

Conclusion

- Programming languages have hierarchical structures, long-term dependencies, and frequent keywords.
- For code syntax understanding, the pre-trained models even perform worse than simple baselines, and often attend to frequent nearby tokens regardless of hierarchical code structure.
- Designing new architectures and pre-training algorithms to leverage code structures are important future work for code learning.

Thank you!

Code: https://github.com/dashends/CodeSyntax