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Structural understanding can be more difficult than traditional understanding
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Predict single words Predict structures

Joint-entity relation extraction



Why is structural understanding challenging for LMs?

5

LMBorn in 1951 in Tbilisi,

Iago is a Georgian artist.



Why is structural understanding challenging for LMs?

5

Challenge 1: Representation for structure

LMBorn in 1951 in Tbilisi,

Iago is a Georgian artist.



Why is structural understanding challenging for LMs?

5

Challenge 1: Representation for structure

LMBorn in 1951 in Tbilisi,

Iago is a Georgian artist.



Why is structural understanding challenging for LMs?

5

Challenge 1: Representation for structure
Challenge 2: Unifying different structure prediction tasks
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Structure representation formulated as text-to-triple generation problem for LM
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Dataset Statistics 

~ 51M sentences 
~ 134M entities 
~ 114M relations (triples) 

DeepStruct is trained on a large task-agnostic corpus

Dataset Source 
6 publicly available datasets:


T-REx

TEKGEN

KELM

WebNLG

ConceptNet

OPIEC
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28 Datasets           10 Tasks            ~ 700K sentences

DeepStruct supports a wide range of downstream applications
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Thank you for your time and interest!

Code: https://github.com/cgraywang/deepstruct

DeepStruct: train LM to produce triples from text

DeepStruct 10B zero-shot model largely outperforms GPT-3 175B

State-of-the-art on 21 of 28 datasets over 10 tasks

https://github.com/cgraywang/deepex

