
Active Learning for Black-Box Semantic Role Labeling
with Neural Factors

Chenguang Wang, Laura Chiticariu, Yunyao Li
IBM Research - Almaden

chenguang.wang@ibm.com, {chiti, yunyaoli}@us.ibm.com

Abstract
Active learning is a useful technique for tasks for
which unlabeled data is abundant but manual la-
beling is expensive. One example of such a task
is semantic role labeling (SRL), which relies heav-
ily on labels from trained linguistic experts. One
challenge in applying active learning algorithms for
SRL is that the complete knowledge of the SRL
model is often unavailable, against the common as-
sumption that active learning methods are aware of
the details of the underlying models. In this paper,
we present an active learning framework for black-
box SRL models (i.e., models whose details are un-
known). In lieu of a query strategy based on model
details, we propose a neural query strategy model
that embeds both language and semantic informa-
tion to automatically learn the query strategy from
predictions of an SRL model alone. Our experimen-
tal results demonstrate the effectiveness of both this
new active learning framework and the neural query
strategy model.

1 Introduction
Active learning is a special case of semi-supervised machine
learning in which a learning algorithm is able to interactively
query the human to obtain the desired outputs at new data
points. The goal of active learning is to carefully select the
training data from which the model is being learnt in order to
achieve good performance with less training data. A model
(learner) starts with a small labeled set, then iteratively selects
informative instances from unlabeled data based on a prede-
fined query strategy and elicits labels for these instances; the
new labeled instances are then added to the training set to
train the model. Active learning is thus suitable for solving
problems for which unlabeled data is abundant, but labels are
expensive to obtain, such as parsing and speech recognition.

Semantic role labeling (SRL) [Gildea and Jurafsky, 2002]
aims to recover the predicate-argument structure of an input
sentence. Labeled data for training SRL models requires lin-
guistic expertise and is time-consuming and labor-intensive
to obtain, making active learning an attractive option. How-
ever, query strategies such as uncertainty sampling [Lewis
and Gale, 1994; Scheffer et al., 2001; Culotta and McCallum,

2005] and query-by-committee [Dagan and Engelson, 1995;
Seung et al., 1992], which are at the core of current active
learning methods, require knowing the details of the under-
lying models. Unfortunately, the details of SRL models are
often unavailable for the following two reasons.
High Complexity of SRL Model An SRL model typically
contains four components: predicate identification and dis-
ambiguation, as well as argument identification and classifi-
cation. Each component can be a different model with addi-
tional interplays with other components (e.g., logistic regres-
sion or neural network). The output of an SRL model con-
tains four elements: predicate and frame label, argument and
role label. For example, the output of a given sentence “Ms.
Haag plays Elianti” would be the following: “plays” (pred-
icate) and “play.02” (frame label), “Ms. Haag” (argument)
and “A0” (role label)1. These characteristics make SRL mod-
els complex and difficult to understand.
Low Accessibility of Most SRL Models Details Moreover
the details of existing SRL models are often inaccessible.
Many SRL models, such as the two used in our investigation
(MATE2 and CLEAR3) are provided in binary forms, simply
do not expose their model details in their implementations.

Thus, the conventional assumption for an active learning
method to have full knowledge of the model details no longer
holds true for SRL models. We refer to models which are
complex and whose details are unknown as black-box SRL
models. In this paper, we propose an active learning frame-
work that works for black-box SRL models (see Fig. 1(b)).
The main idea is that instead of using a traditional query
strategy, we automatically learn a query strategy model from
predictions of the black-box SRL model and a small set of
annotated data. In later active learning process, the query
strategy model is able to identify both the most informative
predicted SRL label needed to query the human annotator
(referred as human-need SRL label) and the high-confidence
predicted SRL label (referred as human-free SRL label) that
can be directly added to the training set of the black-box SRL
model. The above active learning can also be seen as a com-
bination of traditional active learning and self-training. For
the sake of simplicity, we use active learning to denote the

1Here we use the PropBank formalism of SRL.
2code.google.com/archive/p/mate-tools/
3code.google.com/archive/p/clearparser/
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Figure 1: Active learning for black-box SRL model framework.

process in the rest of the paper.
Given a set of predicted SRL labels from an SRL model

trained on an initial training set with little gold annotations,
our framework consists of two phases:
Step 1: Query Strategy Model Training We propose a neu-
ral query strategy model to select labels for manual curation.
The query strategy model is trained only once as shown in
Fig. 1(a), using a small SRL labeled dataset4. It replaces a
classic query strategy such as uncertainty sampling that is in-
formed by the details of the SRL model.
Step 2: Active Model Learning The query strategy model
predicts whether an SRL label requires manual curation. Ex-
pert human annotators curate the human-need SRL labels de-
tected by the query strategy model. Human-free SRL labels
and curated human-need SRL labels are then added to the ini-
tial training set to retrain the SRL model.

In summary, we use the query strategy model to recover the
knowledge about an SRL model via a neural network (e.g.,
what kind of SRL labels the model is not good at predicting).
This knowledge is then used in an active learning process to
help generate a better SRL model.
Contributions In summary, our contributions include:
• We propose ACTIVESRL an active learning framework

for black-box SRL models to enable higher model per-
formance even when the model details are inaccessible.
• We present a neural query strategy model QUERYM to

learn the strategy for selecting the data instances to be
added in the next iteration of SRL model training. The
neural network naturally incorporates joint language and
semantic embeddings to optimize its capability towards
SRL. It replaces conventional query strategies that can
be employed only when the model details are known.
• Experimental results demonstrate the effectiveness of

our query strategy model. With active model learning,
the final SRL models achieve significant improvements
over the initial ones.

2 Query Strategy Model
In this section, we describe the query strategy model
QUERYM as the following classification problem: Given the

4The labeled dataset isn’t necessarily the same as the initial train-
ing set for the SRL model.

predicted SRL labels (i.e., output) from the model, the goal of
the QUERYM is to classify a predicted SRL label as a Human-
free SRL label if the predicted SRL label is likely to be the
gold SRL label, or a Human-need SRL label otherwise.

2.1 Model Overview
We design the query strategy model to address the following
challenges: First, both language specific information (e.g.,
words and phrases) and semantic specific information (e.g.,
predicates and arguments) impact the predicted SRL labels.
For example, the word form of the predicate will determine
which role labels are possible. Thus the model needs to cap-
ture the interplay between predicate and its arguments. Sec-
ond, models based on basic language-specific features suffer
from data sparsity problem. For example, word form is of-
ten sparse in training data and hence does not generalize well
across test set.

To address the two challenges, we jointly embed both lan-
guage and semantic input into a shared low-dimensional vec-
tor space: joint language and semantic embedding tackles
the former; and embedding is the state-of-the-art solution to
the latter. The joint embeddings belong to a neural network
which solves the classification problem.

Fig. 2 illustrates the neural QUERYM containing four lay-
ers: (1) an input layer: consisting of language text and its
associated semantic labels; (2) an embedding layer: taking in-
put layer and outputting language and semantic vector repre-
sentation of the input; (3) a hidden layer: aligning and embed-
ding language vector and semantic vector in the same vector
space; (4) a softmax layer: predicting human-free or human-
need SRL labels based on the hidden states as input.

2.2 Model Description
We now describe each layer of QUERYM in more details.
Language Embedding To embed the language specific in-
formation, we use Skip-gram model [Mikolov et al., 2013] to
find the low-dimensional word representations that are good
at predicting the surrounding words in the input sentence.
Formally, the basic Skip-gram formulation defines the fol-
lowing conditional likelihood using the softmax function:

q(wj |wi) =
exp(~v′j

T~vi)∑|W |
k=1 exp(~v

′
k
T~vi)

(1)
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where wj is the surrounding words of wi within certain con-
text size, ~vk and ~v′k are the word representations of wk when
it appears as the word itself, or the context of other words,
|W | is the size of vocabulary.

Given an input consisting of a sequence of words
w1, w2, · · · , wT , and the context size c, the objective func-
tion of the language embedding is to maximize the average
log probability of Eq. (1):

L~eL =

T∑
i=1

∑
−c≤j−i≤c,j−i 6=0

log q(wj |wi) (2)

Semantic Embedding We assume that the semantic labels
belonging to one frame, i.e., frame labels for predicates, as
well as role labels for arguments, should be close in the em-
bedding vector space. To embed the semantic role labels,
we explicitly model the interplays between certain argument
associated with a predicate and the predicate. Inspired by
TransE [Bordes et al., 2013; Wang et al., 2014], we first de-
fine the score of closeness between predicate and one of its
arguments as:

z(~p,~a) = b− 1

2
||~p− ~a||2 (3)

where ~p and ~a are the vector representation of predicate span
p and argument span a respectively, b is a constant for bias
designated for adjusting the scale for better numerical sta-
bility. z(~p,~a) is expected to be large if the presentation of
argument and predicate are close in the vector space.

We define the conditional probability of a predicate-
argument structure (p, a) as follows:

q(a|p) = exp{z(~p,~a)}∑
a′∈A exp{z(~p, ~a′)}

(4)

where A is the set of all argument spans in the corpus.
We also define q(p|a) in the same way by choosing the cor-

responding normalization term. The objective function of the
semantic embedding as below is to maximize the conditional
likelihoods of existing predicate-argument structure (p, a) in
the corpus.

L~eS =
∑
p∈P

∑
a∈A

log(q(a|p) + q(p|a)) (5)

where P is the set of all predicate spans in the corpus.
Hidden Layer The optimal dimensions of the language em-
bedding space and semantic embedding space are usually dif-
ferent. The key challenge of jointly embedding language

and semantic becomes how to align the language embedding
space with the semantic embedding space. The hidden layer~h
is to combine the language and semantic embeddings through
rectified linear units (ReLU).

~h = max(0,WeLh~eL +WeSh~eS +~bh) (6)

where ~h represents the joint embedding result (hidden state
vector), WeLh is the weight matrix connecting language em-
bedding and hidden layer, ~eL is the language embedding vec-
tor, WeSh is the weight matrix connecting semantic embed-
ding and hidden layer, ~eS is the semantic embedding vector,
and~bh is the y-intercept in ReLU. The parameter and weight
matrices learning methods will be introduced in this section.
Softmax Layer This layer outputs the predicted probability
for n-th class using the hidden inputs of each instance.

q(y = n|~h) = eW
eLs
n ~eL+W

eSs
n ~eS+Whs

n
~h+~bsn∑|K|

k=1 e
W

eLs

k ~eL+W
eSs

k ~eS+Whs
k

~h+~bsk
(7)

The category with the highest probability decides the final
predicted category of the input instance.

2.3 Model Optimization
Embedding Layer Local Optimization It is impractical to
directly compute the conditional probabilities in both lan-
guage embedding, i.e., q(wj |wi), and semantic embedding,
i.e., q(a|p) and q(p|a), because that the computation cost is
proportional to |W |, |A| and |P|, which are often very large.
To avoid this heavy computation, we adapt negative sam-
pling [Mikolov et al., 2013], which samples multiple neg-
ative samples according to some noisy distribution for lan-
guage and semantic embedding respectively. For language
embedding layer, log q(wj |wi) in Eq. (2) is replaced with the
following objective function:

log σ(~v′j
T~vi) +

K∑
k=1

Ewk∼qn(w)[log σ(~v
′
k
T~vi)] (8)

where σ(x) = 1
1+exp(−x) is the logistic function. The for-

mulation models the observed word co-occurrence as well as
the negative word co-occurrence drawn from the noise dis-
tribution, and K is the number of negative samples. We
choose qn(w) ∝ qu(w)

3
4 as suggested in [Mikolov et al.,

2013], where qu(w) is an unigram distribution over vocabu-
lary. The negative samples from the distribution are consid-
ered as words that are never concurrent.

For the semantic embedding layer, we also use negative
sampling to convert original objective in Eq. (5) to a simple
objective of a binary classification problem, to also differen-
tiate data from noise. We define the probability of an ex-
isting predicate-argument structure (p, a) to be labeled as 1
(y′ = 1):

q(y′ = 1|p, a) = σ(z(~p,~a)) (9)
where y′ ∈ {0, 1}.

Similar to that in language embedding, we maximize the
following objective instead of log q(a|p) in objective Eq. (5).

log q(1|p, a) +
K′∑
k=1

Eak∼qn(a)[log q(0|p, ak)] (10)



where K ′ is the number of negative samples according to ev-
ery positive sample. We also set qn(a) ∝ qu(a)

3
4 , where

qu(a) is an unigram distribution over argument spans. The
negative samples are then formed by replacing a with the ar-
gument span from the noise distribution. We similarly define
the same objective for log q(p|a) by using the according noise
distributions. The noise distribution is also set as the unigram
distribution raised to the 3/4rd power.

We use the asynchronous stochastic gradient algorithm
(ASGD) [Recht et al., 2011] to optimize both Eq. (2) and
Eq. (5) with the simplified objectives introduced in this sec-
tion. In each step, the ASGD algorithm samples a mini-batch
of samples to update the model parameters.

The two objectives are simultaneously optimized. Then
we use the trained embedding layer to produce the optimized
language and semantic embedding.
Neural Model Global Optimization To align the embed-
dings, we use the hidden layer in neural network structure
in Fig. 2. We train the neural network model by taking
the derivatives of the loss through backpropagation using
the chain rule, with the respect to the whole set of parame-
ters [Collobert et al., 2011], i.e., parameters in Eq. (6) and
Eq. (7). We use ASGD to update the parameters.

3 Active Model Learning

Algorithm 1 ACTIVESRL :
Active Learning for Black-box SRL Model.

Input: Labeled training data Dl
train, labeled test data Dl

test, un-
labeled data Du, minimum accuracy change threshold minδ,
maximum number of iterations maxIter.

Output: An SRL model L∗srl.
1: Train an SRL model Lsrl with Dl

train;
2: Apply Lsrl on Dl

train, collect predicted labels;
3: Train QUERYM Lq based on Dl

train according to Sec. 2.
4: Accuracy change δ ← 0, iter ← 1;
5: while δ > minδ or iter ≤ maxIter or Du 6= ∅ do
6: ApplyLq onDu, collect sampled human-free SRL labelsDl

f

and all human-need SRL labels Dl
n;

7: Dl
train ← Dl

train ∪ Dl
f ;

8: Query human annotator to curate Dl
n, collect curated SRL

labels D′ln;
9: Dl

train ← Dl
train ∪ D′ln;

10: An optimized SRL model L∗srl← Retrain Lsrl withDl
train;

11: Apply L∗srl on Dl
test and record accuracy change δ;

12: Du = Du − (Dl
f ∪ Dl

n), iter ← iter + 1;
13: end while
14: return L∗srl.

In this section, we describe the active model learning algo-
rithm ACTIVESRL with the neural query strategy model for
black-box SRL model.

The details of ACTIVESRL are shown in Algorithm 1: We
begin with two small sets of labeled training and test data, a
large unlabeled data, and two stopping criteria for the learn-
ing approach: A minimum accuracy change threshold minδ
and a maximum number of iterationsmaxIter. We first train
an initial SRL model and the proposed neural query strat-

egy model once (lines 1-3). Then while the stopping crite-
ria are not reached, we repeat the following steps: We apply
the query strategy model to the unlabeled data, and collect
the predicted SRL labels (line 6). We next directly add all
human-free SRL labels to the training data, shuffle partial
human-need SRL labels to the human annotator based ran-
dom sampling, and add the curated human-need SRL labels
to the training data (lines 7-9). We retrain the SRL model
on the updated training data and evaluate on test data (lines
10-11). We record the change in accuracy in this iteration.
The algorithm converges when either the change in accuracy
is below minδ, or when maxIter is reached.

4 Experimental Setup
Datasets We conduct all the experiments based on CoNLL-
2009 shared task for English [Hajič et al., 2009]. We split the
training set into two equal portions: denoted as TRAIN and
DEV, and denote the in-domain and out-of-domain test sets
in the CoNLL-2009 shared task as TESTid and TESTod.
Black-box SRL Models We select three state-of-the-art SRL
models as black-box models. (1) MATE [Björkelund et al.,
2010]: it combines the most advanced SRL system and syn-
tactic parser in the CoNLL2009 shared task for English;
(2) CLEAR [Choi and Palmer, 2011]: The labeler uses a
transition-based SRL algorithm; (3) K-SRL [Akbik and Li,
2016]: it is the current best performing system in CoNLL-
2009 shared task for English. All initial SRL models are
trained using five-fold cross validation on 50% of TRAIN, de-
noted as TRAINsrl.
Query Strategy Models We design several compara-
ble query strategy models to compare with the proposed
QUERYM, as summarized in Tab. 1. QUERYMbow rep-
resents SVM model with traditional bag-of-words model
with tf weighting mechanism. The following five mod-
els are based on QUERYM, but with only language em-
bedding as the input layer, with QUERYMpca using [Le-
bret and Collobert, 2013], QUERYMglobal adopting [Huang
et al., 2012], QUERYMglove using [Pennington et al.,
2014], QUERYMbrown using [Brown et al., 1992], and
QUERYMeigen using [Dhillon et al., 2011]. Since the pro-
posed language embedding performs the best among all the
above language embeddings as shown in Tab. 1, we don’t
combine them with the semantic embeddings in our study.

QUERYMle denotes QUERYM with language embedding
(trained on full English Wikipedia data5) only6 in the input
layer. QUERYMse represents QUERYM with semantic em-
bedding (trained on Propbank data.7) only in the input layer.

For each black-box SRL model, all the above query strat-
egy models are trained on 80% of TRAINsrl and tested on
20% of TRAINsrl. The training and test sets are denoted as
TRAINq and TESTq respectively.
Active Learning Methods We compare ACTIVESRL (Al-
gorithm 1) with two traditional active learning strategies:
Random sampling (RANDSRL) and Uncertainty sampling

5http://goo.gl/g1EMX9
6Our language embedding is the same as the word2vec [Mikolov

et al., 2013] with Skip-gram model.
7http://propbank.github.io/



Method dims MATE CLEAR K-SRL

QUERYMbow - 86.60 87.19 84.40
QUERYMpca 200 87.52 90.77 92.15
QUERYMglobal 50 90.67 92.80 92.10
QUERYMglove 300 84.60 92.32 91.65
QUERYMbrown 320 91.10 91.27 92.00
QUERYMeigen 200 85.67 91.33 92.10
QUERYMle 300 91.80 92.25 92.50
QUERYMse 200 94.40 93.43 93.25
QUERYM 200 94.95 94.11 94.10

Table 1: Results of query strategy models for black-box SRL
models on TESTq (accuracy).

(UNCERTAINTYSRL) [McCallumzy and Nigamy, 1998].
Among the three SRL models, only K-SRL exposes the
model details. So the UNCERTAINTYSRL can only be ap-
plied to K-SRL. We use the reciprocal of confidence score of
each prediction defined in [Akbik and Li, 2016] as the uncer-
tainty score for K-SRL.

ACTIVESRLhf : ACTIVESRL with human-free labels
only, where lines 8-9 are skipped in Algorithm 1.

In each iteration of the active learning process (lines 5-13),
we select n labels from the unlabeled set DEV to query the
human annotators according to the different query strategies.
Then we use the curated labels with initial labels to retrain
the initial black-box SRL model. n is set as |DEV|

maxIter . We also
empirically set minδ as 0.0001 and maxIter as 10 [Settles,
2010] in line 5 of Algorithm 1. The same parameter values
apply to all the above methods. For RANDSRL, we ignore
the minδ stopping criterion.
Human Annotators We simulate the expert annotators using
the CoNLL-2009 gold SRL annotations.
Evaluation Metrics We use accuracy to measure the quality
of the query strategy model and precision, recall and F1-score
to measure the quality of SRL models.

5 Experimental Results
In this section, we evaluate the effectiveness of both
QUERYM and ACTIVESRL.

5.1 Neural Query Strategy Model
To test the ability of the neural query strategy model with joint
language and semantic embedding, we compare it with other
comparable models shown in Sec. 4. We make the following
observations from the results (Tab. 1):
Semantic embedding significantly outperforms other em-
beddings. This result indicates that semantic embedding
can better preserve the predicate-argument structure informa-
tion even with a lower-dimensional vector than the language
model. Besides, QUERYMse is able to leverage the knowl-
edge of semantic embedding vectors to impact the predictions
with at least +1% gain in accuracy.
Joint language and semantic embedding consistently per-
forms the best. The results again show that the semantic em-
bedding brings more semantic information in understanding
the text to generate better QUERYM. In addition, the language
embedding is also useful to capture the hidden semantics in

the text when the predicate-argument structure is missing or
hard to capture. Even though the optimized dimensions of
language embedding and semantic embedding are different,
the hidden layer is able to align the two.
Addressing data sparsity. The results indicate that lever-
aging simple language features alone is not enough to un-
derstand the SRL tasks due to the sparsity issues, which can
be relieved by leveraging embedding vectors. Embeddings
trained over large open-domain datasets are capable to cap-
ture more information relevant to SRL task.

5.2 Active Model Learning
We compare the end-to-end SRL performance of AC-
TIVESRL and ACTIVESRLhf with other active learning
methods described in Sec. 4, as well as the performance of
the initial SRL model trained on TRAIN (denoted as “Initial”),
and the upper bound performance of the SRL model trained
on the entire CoNLL-2009 training set (TRAIN+DEV), de-
noted as “Upper Bound.” All SRL models are learned with
each active learning algorithm until reaching convergence.
Tab. 2 summarizes the performance on both TESTid and
TESTod. We make the following observations:
All SRL models with ACTIVESRLhf significantly outper-
form the initial SRL models. The gains of SRL models with
our method suggest that 1) QUERYM can identify the human-
free labels with high accuracy; and 2) the unknown model
knowledge recovered by the query strategy model is useful to
improve the performance of SRL models.
ACTIVESRL performs well across SRL models and close
to upper bound. We observe consistent improvements from
ACTIVESRL on both datasets. The improvements indicate
that QUERYM is able to learn the preference of each model,
despite of their complexity, their significant differences be-
tween each other, and the black-box nature of MATE and
CLEAR. The results also show that ACTIVESRL can effec-
tively leverage QUERYM to impact the final model quality.
The final SRL models also evidently outperform the SRL
models trained with ACTIVESRLhf , indicating that human
annotations complement QUERYM where the labels are rare
and hard to be correctly identified. Furthermore, we observe

Method Setting TESTid TESTod

P R F1 P R F1

MATE Initial 86.11 81.11 83.53 75.70 68.38 71.86
ACTIVESRLhf 87.07 82.45 84.70 76.25 70.47 73.25
ACTIVESRL 87.69 83.42 85.50 76.79 71.27 73.93
Upper Bound 89.59 86.07 87.79 79.46 74.21 76.74

CLEAR Initial 82.07 70.57 75.89 72.77 62.14 67.09
ACTIVESRLhf 83.12 72.97 77.72 73.02 62.57 67.44
ACTIVESRL 83.65 73.74 78.38 74.37 66.90 70.48
Upper Bound 84.74 74.47 79.27 75.44 67.20 71.08

K-SRL Initial 89.54 80.50 84.78 81.39 69.34 74.88
ACTIVESRLhf 90.37 82.90 86.48 82.15 71.27 76.33
ACTIVESRL 91.05 84.44 87.62 82.67 72.74 77.39
Upper Bound 91.21 87.42 89.28 82.09 77.84 79.91

Table 2: SRL results on TESTid and TESTod.



Figure 3: Performance comparison of different active learn-
ing methods for K-SRL on TESTid (F1-score).

the final performance of SRL models with ACTIVESRL are
competitive with the “Upper Bound” performance, but with
less annotation costs (31.5%).

We further investigate the active learning process by com-
paring our framework with other active learning methods. We
further include ACTIVESRL+UPDATING QUERYM to com-
pare: the active learning process is exactly the same as AC-
TIVESRL but the QUERYM is retrained on the curated labels
from the previous iterations and the initial labels in every iter-
ation. Fig. 3 shows the F1-scores of K-SRL on TESTid. We
make the following observations:
K-SRL with ACTIVESRL and ACTIVESRLhf per-
forms competitive with UNCERTAINTYSRL. UNCER-
TAINTYSRL only outperforms ACTIVESRL with +0.74% in
F1-score at iteration 10. More interestingly, at the earlier it-
erations, both ACTIVESRL and ACTIVESRLhf outperform
UNCERTAINTYSRL. The reason is that our active learning
framework could leverage more human-free labels identified
by QUERYM when UNCERTAINTYSRL only leverages the
comparably less amounts of the curated human-need labels at
the beginning of the learning process.
K-SRL with ACTIVESRL and ACTIVESRLhf signifi-
cantly outperforms RANDSRL. The results indicate that
our active learning framework is able to identify both human-
free labels with high-confidence, as well as assign correct
human-need labels to human annotators, with the presence
of the QUERYM. We also notice that ACTIVESRL and AC-
TIVESRLhf finally come to the convergence.
ACTIVESRL+UPDATING QUERYM slightly outperforms
ACTIVESRL. The results mean that the semantic embedding
in QUERYM is effective in capturing the new label instances,
since the embedding is trained on a large annotated label set.
This also shows that it is possible to further improve the per-
formance of final SRL model by retraining the query strategy
model in each iteration of the active learning. However, the
retraining process introduces extra training time. We there-
fore recommend training the QUERYM once in practice.

6 Related Work
Embeddings for NLP aim to use distributional information
to represent natural language in lower-dimensional spaces.

Most embedding approaches, such as word2vec [Mikolov et
al., 2013], Glovec [Pennington et al., 2014] and C&W [Col-
lobert et al., 2011] aim to embed language information
(words, phrases and sentences [Palangi et al., 2016]) into vec-
tors, capturing only semantics induced from the distributional
information in the data. Dependency path embeddings [Tai et
al., 2015; Roth and Lapata, 2016] aim to capture more se-
mantic information from the syntactic structure. Different
from the existing embeddings, our semantic embedding ex-
plicitly models the semantic information from an SRL anno-
tated corpus. When combined with the language embedding,
our joint embedding captures higher-level semantics that ben-
efit semantic-based applications, e.g., SRL.
Neural networks for SRL such as [Collobert et al., 2011],
design neural structures to capture the context of words; re-
cent models explore additional language features, e.g., word
sequences [Zhou and Xu, 2015], dependency paths [FitzGer-
ald et al., 2015] and compositional embeddings [Roth and
Woodsend, 2014]. Without designing a neural SRL model,
we use a neural query strategy model to improve an exist-
ing SRL model via active learning. Our approach could be
adapted to improve existing neural SRL models, an avenue
which we leave for future work.
Active learning for NLP has been widely studied [Settles,
2010], e.g., information extraction [Thompson et al., 1999],
text classification [McCallumzy and Nigamy, 1998], part-of-
speech tagging [Dagan and Engelson, 1995] and natural lan-
guage parsing [Thompson et al., 1999]. These studies assume
that the details of the NLP model are known, and show that
sampling techniques such as uncertainty sampling [Lewis and
Gale, 1994] and query-by-committe [Dagan and Engelson,
1995] are effective. In contrast, we show how active learning
is applicable even when the model details are inaccessible,
and use SRL as an example task.
Self-training for NLP uses the existing model to label unla-
beled data, which is then treated as additional ground truth
to retrain the model. It has been found not too effective,
and even damaging in several NLP tasks: parsing [Charniak,
1997], part-of-speech tagging [Clark et al., 2003]. In con-
trast, our neural query strategy model automatically classifies
predicted SRL labels into either suitable as additional ground
truth as-is, or requiring human curation.

7 Conclusion

We study the problem of enabling active learning when the
details of SRL models are missing or inaccessible. We pro-
pose a neural query strategy model to recover the model
details (by distinguishing human-free and human-need SRL
labels) using a joint language and semantic embedding of
an input sentence, and hand over the decisions to the ac-
tive learning process. We experimentally show that our ap-
proach boosts different SRL models to achieve state-of-the-
art performance. In the future we plan to apply our active
learning framework to other NLP tasks (e.g., dependency
parser) and incorporate domain knowledge in the query strat-
egy model [Wang et al., 2015a; 2015b; 2016].
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