Language Models with Transformers

Chenguang Wang, Mu Li, Alexander J. Smola

Amazon Web Services

Background

Language Model (LM)

* Predict what word comes next

Start to learn English

Language Model (LM)

* Predict what word comes next
e Useful in many NLP applications

Start to learn English

Language Model (LM)

e Predict what word comes next
e Useful in many NLP applications

Start to learn English Word order matters!

Learn to start business

* Many NLP problems share similar definition

Language Model with RNNs

* RNN uses one-hot encoding

input Start

Language Model with RNNs

* RNN models the word order in hidden state

output
hidden state —
1
input Start

Language Model with RNNs

* RNN models the word order in hidden state

output

hidden state

input

Language Model with RNNs

* RNN models the word order in hidden state

output
hidden state
f ! !
input Start to learn

SOTA NLP with Transformers

Transformer

Positional encoding

With less word order

Other components are omitted
for simplicity [Devlin, Jacob, et al 2018]

10

SOTA NLP with Transformers

Transformer

T 7

Self-attention

* Parallelizable

e Efficient

Positional encoding

Other components are omitted
for simplicity [Devlin, Jacob, et al 2018]

SOTA NLP with Transformers

 With less word order

Transformer * Parallelizable
e Efficient

Self-attention

Positional encoding

 With word order

e Sequential
e Less efficient

Other components are omitted
for simplicity [Devlin, Jacob, et al 2018]

12

SOTA NLP with Transformers

Transformer 11

Transformer 1

Transformer O

e BERT: a stack of 12 (or 24) Transformer blocks

SOTA NLP with Transformers

Transformer 11

Transformer 1

Transformer O

e BERT: a stack of 12 (or 24) Transformer blocks

* Trained on large language model datasets
* Full training cost in excess of $10,000 (16 TPU, 4 days)

* Achieved SOTA results on 11 NLP applications

* Sentence level tasks:

Approach:
Make Best Use of BERT for Language Model

LM: Adapted BERT

BERT with Linear Layer

Linear

_ tinear |
Transformer 0_|

embedding

Tunable
weights

16

LM 1: Adapted BERT with Fixed Weights

Model | Test PPL.

Linear BERT 69.32 Only moderate results
RNN 42 95 (the Lower, the Better)

embedding

Tunable
weights

17

LM 2: Adapted BERT with All Weights

Linear

Transformer 11

Model | Tet PPL

BERT
-~ BERT-AI

Transformer O

embedding

RNN

69.32
67.43
42.25

Tunable
weights

18

LM 3: Adapted BERT with Partial Weights

Model | Tet PPL

Linear BERT 69.32

Transformer 11 \ BERT-AII 67.43
| BERT-Subset 40.56

_ RNN 42 95 However, enumerating is
embedding not feasible
Tunable
weights

Fix a subset of weights is

promising

19

LM 4. Adapted BERT with RNN

Linear

model st pet Il
word order is promising

BERT
> BERT-RNN

RNN

embedding

RNN

69.32
41.64
42.25
However, enumerating
is not feasible
e Where
Tunable ° HOW many
weights

20

Where to add the
RNN layers?

21

Where to add the
RNN layers?

Which layer’s pre-trained
weights should be fixed?

22

Coordinate Architecture Search (CAS)

» Step 1: Choose a layer’s weights to fix

Tunable
WEELll Fix Transformer 0’s weights

Transformer 1

embedding

Coordinate Architecture Search (CAS)

» Step 1: Choose a layer’s weights to fix
» Step 2: Choose a position to add a RNN layer

Tunable

waraAdd a RNNNayver

— RNN

—

Transform Transformer 1

embedding embedding

Coordinate Architecture Search (CAS)

* Step 1: Choose a layer’s weights to fix
* Step 2: Choose a position to add a RNN layer
* Step 3: Go to Step 1 or Terminate

Add a linear layer

Fixed Tunable

weights weights — Linear
e
_— RNN RNN
S

Transformer 1 Transformer 1 Transformer 1 Transformer 1
Transformer O »| Transformer O Transformer O Transformer O

embedding embedding embedding embedding

25

Coordinate Architecture Search (CAS)

* Step 1: Choose a layer’s weights to fix
* Step 2: Choose a position to add a RNN layer

e Step 3: Go to Step 1 or Terminate

Fixed Tunable
weights weights

Transformer 1

Transformer O

——

Linear

——

RNN

RNN

Transformer 1

Transformer 1

Transformer 1

P>

embedding

* Greedy strategy: fine-tune the resulting BERT and keep the best

Transformer O

Transformer O

Transformer O

embedding

embedding

embedding

26

Best LM:

Adapted BERT with CAS

B AWD-LSTM-MoS-BERTVocab [BERT

BERT-CAS-Subset B BERT-CAS-LSTM
B BERT-CAS B BERT-Large-CAS
120
100

(0]
o

Test Perplexity
n O
o o

N
o

o

PTB WT-103

27

Best LM: Adapted BERT with CAS

B AWD-LSTM-MoS-BERTVocab [BERT

" BERT-CAS-Subset B BERT-CAS-LSTM
B BERT-CAS B BERT-Large-CAS
120

BERT-Large+CAS is best

100

80

28

Best LM: Adapted BERT with CAS

B AWD-LSTM-MoS-BERTVocab [BERT

" BERT-CAS-Subset B BERT-CAS-LSTM
B BERT-CAS B BERT-Large-CAS
120

BERT-Large+CAS is best

Capture word order

29

Best LM: Adapted BERT with CAS

B AWD-LSTM-MoS-BERTVocab [BERT

" BERT-CAS-Subset B BERT-CAS-LSTM
B BERT-CAS B BERT-Large-CAS
120

BERT-Large+CAS is best

100
Capture word order

Test Perple

Achieve SOTA: 31.34 PPL

with 0.5 GPU days

30

Best LM: Adapted BERT with CAS

B AWD-LSTM-MoS-BERTVocab [BERT

" BERT-CAS-Subset B BERT-CAS-LSTM
B BERT-CAS B BERT-Large-CAS
120

BERT-Large+CAS is best 100

Capture word order

Achieve 20.42 PPL
with 1B tokens

Test Perple

Achieve SOTA: 31.34 PPL

with 0.5 GPU days

31

Take-aways

* BERT needs to be adapted for language model
* Add RNN layers with neural architecture search works

* Fix pre-trained weights with neural architecture search works

