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• Predict what word comes next
• Useful in many NLP applications

• Many NLP problems share similar definition

Start to learn English

Learn to start business

Word order matters!
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• RNN uses one-hot encoding
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Self-attention

Positional encoding

Transformer

Other components are omitted 
for simplicity [Devlin, Jacob, et al 2018]

• With less word order
• Parallelizable
• Efficient

• With word order
• Sequential
• Less efficient

RNN
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SOTA NLP with Transformers

• BERT: a stack of 12 (or 24) Transformer blocks
• Trained on large language model datasets
• Full training cost in excess of $10,000 (16 TPU, 4 days)

• Achieved SOTA results on 11 NLP applications
• Sentence level tasks: care less about word order
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Approach: 
Make Best Use of BERT for Language Model
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LM: Adapted BERT
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LM 1: Adapted BERT with Fixed Weights
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Overfitting

LM 2: Adapted BERT with All Weights



LM 3: Adapted BERT with Partial Weights
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LM 4: Adapted BERT with RNN

20

.

.

embedding

Linear

Fixed 
weights

Tunable 
weights

Model Test PPL

BERT 69.32

BERT-RNN 41.64

RNN 42.25

Add RNN to capture 
word order is promising 
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Where to add the 
RNN layers?
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Which layer’s pre-trained 
weights should be fixed?

Where to add the 
RNN layers?



Coordinate Architecture Search (CAS)
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• Step 1: Choose a layer’s weights to fix
• Step 2: Choose a position to add a RNN layer
• Step 3: Go to Step 1 or Terminate

• Greedy strategy: fine-tune the resulting BERT and keep the best
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Coordinate Architecture Search (CAS)
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• Step 1: Choose a layer’s weights to fix
• Step 2: Choose a position to add a RNN layer
• Step 3: Go to Step 1 or Terminate

• Greedy strategy: fine-tune the resulting BERT and keep the best
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Coordinate Architecture Search (CAS)
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• Step 1: Choose a layer’s weights to fix
• Step 2: Choose a position to add a RNN layer
• Step 3: Go to Step 1 or Terminate

• Greedy strategy: fine-tune the resulting BERT and keep the best
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BERT-Large+CAS is best
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Capture word order
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Achieve SOTA: 31.34 PPL
with 0.5 GPU days
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Achieve 20.42 PPL 
with 1B tokens

BERT-Large+CAS is best

Capture word order

Achieve SOTA: 31.34 PPL
with 0.5 GPU days



Take-aways

• BERT needs to be adapted for language model
• Add RNN layers with neural architecture search works
• Fix pre-trained weights with neural architecture search works
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